Lmfa07050031

Lmfa07050031 is a lipid of Fatty Acyls (FA) class. The involved functions are known as Pigment and Polymerization. The related lipids are Propionate.

Cross Reference

Introduction

To understand associated biological information of Lmfa07050031, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lmfa07050031

MeSH term MeSH ID Detail
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Reperfusion Injury D015427 65 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Ketosis D007662 13 associated lipids
Body Weight D001835 333 associated lipids
Heart Failure D006333 36 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Hypothyroidism D007037 32 associated lipids
Per page 10 20 50 | Total 27

PubChem Associated disorders and diseases

What pathways are associated with Lmfa07050031

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What functions are associated with Lmfa07050031?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lmfa07050031?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with Lmfa07050031?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lmfa07050031

Download all related citations
Per page 10 20 50 100 | Total 787
Authors Title Published Journal PubMed Link
Roche E et al. Long-term exposure of beta-INS cells to high glucose concentrations increases anaplerosis, lipogenesis, and lipogenic gene expression. 1998 Diabetes pmid:9648832
Foster DW Banting lecture 1984. From glycogen to ketones--and back. 1984 Diabetes pmid:6094292
Ido Y et al. Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. 2002 Diabetes pmid:11756336
Prentki M and Corkey BE Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? 1996 Diabetes pmid:8593930
Roduit R et al. A role for the malonyl-CoA/long-chain acyl-CoA pathway of lipid signaling in the regulation of insulin secretion in response to both fuel and nonfuel stimuli. 2004 Diabetes pmid:15047616
Brun T et al. Evidence for an anaplerotic/malonyl-CoA pathway in pancreatic beta-cell nutrient signaling. 1996 Diabetes pmid:8549864
Matschinsky FM Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. 1996 Diabetes pmid:8549869
Prentki M et al. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. 2002 Diabetes pmid:12475783
Bandyopadhyay GK et al. Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects. 2006 Diabetes pmid:16873691
Nolan CJ et al. Fatty acid signaling in the beta-cell and insulin secretion. 2006 Diabetes pmid:17130640
McGarry JD and Foster DW Effects of exogenous fatty acid concentration on glucagon-induced changes in hepatic fatty acid metabolism. 1980 Diabetes pmid:7380110
BÃ¥venholm PN et al. Fatty acid oxidation and the regulation of malonyl-CoA in human muscle. 2000 Diabetes pmid:10909961
Dean D et al. Exercise diminishes the activity of acetyl-CoA carboxylase in human muscle. 2000 Diabetes pmid:10923628
Oakes ND et al. Diet-induced muscle insulin resistance in rats is ameliorated by acute dietary lipid withdrawal or a single bout of exercise: parallel relationship between insulin stimulation of glucose uptake and suppression of long-chain fatty acyl-CoA. 1997 Diabetes pmid:9392490
Shafrir E et al. Regulation of muscle malonyl-CoA levels in the nutritionally insulin-resistant desert gerbil, Psammomys obesus. 2002 May-Jun Diabetes Metab. Res. Rev. pmid:12112940
Prentki M et al. Signal transduction mechanisms in nutrient-induced insulin secretion. 1997 Diabetologia pmid:9248699
Yu X et al. Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: prevention of diabetes and ectopic lipid deposition. 2004 Diabetologia pmid:15578153
Bell JA et al. Dysregulation of muscle fatty acid metabolism in type 2 diabetes is independent of malonyl-CoA. 2006 Diabetologia pmid:16868746
Glund S et al. Inhibition of acetyl-CoA carboxylase 2 enhances skeletal muscle fatty acid oxidation and improves whole-body glucose homeostasis in db/db mice. 2012 Diabetologia pmid:22532389
Geisler JG Targeting energy expenditure via fuel switching and beyond. 2011 Diabetologia pmid:20953861
Coletta DK et al. Pioglitazone stimulates AMP-activated protein kinase signalling and increases the expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation in human skeletal muscle in vivo: a randomised trial. 2009 Diabetologia pmid:19169664
Similä S et al. [Methylmalonic aciduria]. 1982 Duodecim pmid:7140596
Schujman GE et al. Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. 2006 EMBO J. pmid:16932747
Guzmán-Ruiz R et al. Sensitivity of cardiac carnitine palmitoyltransferase to malonyl-CoA is regulated by leptin: similarities with a model of endogenous hyperleptinemia. 2010 Endocrinology pmid:20056820
Keung W et al. Chronic central leptin decreases food intake and improves glucose tolerance in diet-induced obese mice independent of hypothalamic malonyl CoA levels and skeletal muscle insulin sensitivity. 2011 Endocrinology pmid:21914780
Ruderman NB et al. Minireview: malonyl CoA, AMP-activated protein kinase, and adiposity. 2003 Endocrinology pmid:14500570
Kreuzaler F et al. Flavanone synthase from Petroselinum hortense. Molecular weight, subunit composition, size of messenger RNA, and absence of pantetheinyl residue. 1979 Eur. J. Biochem. pmid:114396
Inui H et al. Fatty acid synthesis in mitochondria of Euglena gracilis. 1984 Eur. J. Biochem. pmid:6146525
Morita H et al. Novel polyketides synthesized with a higher plant stilbene synthase. 2001 Eur. J. Biochem. pmid:11432743
Ghanevati M and Jaworski JG Engineering and mechanistic studies of the Arabidopsis FAE1 beta-ketoacyl-CoA synthase, FAE1 KCS. 2002 Eur. J. Biochem. pmid:12135493
Wölfle K et al. On the mechanism of action of methylmalonyl-CoA mutase. Change of the steric course on isotope substitution. 1986 Eur. J. Biochem. pmid:2870921
Katiyar SS et al. Inactivation of 3-oxoacyl synthetase activity of pigeon liver fatty acid synthetase by S-(4-bromo-2,3-dioxobutyl)-coenzyme A. 1983 Eur. J. Biochem. pmid:6825687
Hügler M et al. Characterization of acetyl-CoA/propionyl-CoA carboxylase in Metallosphaera sedula. Carboxylating enzyme in the 3-hydroxypropionate cycle for autotrophic carbon fixation. 2003 Eur. J. Biochem. pmid:12581213
McCarthy AD and Hardie DG The multifunctional polypeptide chains of rabbit-mammary fatty-acid synthase. Stoichiometry of active sites and active-site mapping using limited proteolysis. 1983 Eur. J. Biochem. pmid:6549986
Kresze GB et al. Reaction of yeast fatty acid synthetase with iodoacetamide. 3. Malonyl-coenzyme A decarboxylase as product of the reaction of fatty acid synthetase with iodoacetamide. 1977 Eur. J. Biochem. pmid:334544
Schönekess BO et al. Propionyl L-carnitine improvement of hypertrophied rat heart function is associated with an increase in cardiac efficiency. 1995 Eur. J. Pharmacol. pmid:8605952
Trevisan CP et al. Malonyl-CoA abnormal inhibition of residual enzyme activity in carnitine palmitoyltransferase deficiency. 1986 Eur. Neurol. pmid:3720808
Winder WW Malonyl-CoA--regulator of fatty acid oxidation in muscle during exercise. 1998 Exerc Sport Sci Rev pmid:9696987
Brady PS et al. Regulation of the long-chain carnitine acyltransferases. 1993 FASEB J. pmid:8370473
Jenei ZA et al. Packing of transmembrane domain 2 of carnitine palmitoyltransferase-1A affects oligomerization and malonyl-CoA sensitivity of the mitochondrial outer membrane protein. 2011 FASEB J. pmid:21917985
Mingrone G et al. Leptin pulsatility in formerly obese women. 2005 FASEB J. pmid:15955844
Lelliott CJ et al. Transcript and metabolite analysis of the effects of tamoxifen in rat liver reveals inhibition of fatty acid synthesis in the presence of hepatic steatosis. 2005 FASEB J. pmid:15985534
Lindén D et al. Liver-directed overexpression of mitochondrial glycerol-3-phosphate acyltransferase results in hepatic steatosis, increased triacylglycerol secretion and reduced fatty acid oxidation. 2006 FASEB J. pmid:16507761
Relat J et al. A characteristic Glu17 residue of pig carnitine palmitoyltransferase 1 is responsible for the low Km for carnitine and the low sensitivity to malonyl-CoA inhibition of the enzyme. 2009 FEBS J. pmid:19049515
Springob K et al. A polyketide synthase of Plumbago indica that catalyzes the formation of hexaketide pyrones. 2007 FEBS J. pmid:17229146
Wolfgang MJ and Lane MD Hypothalamic malonyl-CoA and CPT1c in the treatment of obesity. 2011 FEBS J. pmid:21199367
Cassagne C et al. Evidence of alkane synthesis by the sciatic nerve of the rabbit. 1977 FEBS Lett. pmid:913574
Ghadiminejad I and Saggerson ED Carnitine palmitoyltransferase (CPT2) from liver mitochondrial inner membrane becomes inhibitable by malonyl-CoA if reconstituted with outer membrane malonyl-CoA binding protein. 1990 FEBS Lett. pmid:2401367
Velasco G et al. Evidence that the AMP-activated protein kinase stimulates rat liver carnitine palmitoyltransferase I by phosphorylating cytoskeletal components. 1998 FEBS Lett. pmid:9845345
Broadway NM and Saggerson ED Inhibition of liver microsomal carnitine acyltransferases by sulphonylurea drugs. 1995 FEBS Lett. pmid:7672113
Kurosaki F Transacylase-like structure and its role in substrate channeling of 6-hydroxymellein synthase, a multifunctional polyketide biosynthetic enzyme in carrot cell extracts. 1996 FEBS Lett. pmid:8566239
Abe I et al. The first plant type III polyketide synthase that catalyzes formation of aromatic heptaketide. 2004 FEBS Lett. pmid:15044020
Scholte HR et al. The source of malonyl-CoA in rat heart. The calcium paradox releases acetyl-CoA carboxylase and not propionyl-CoA carboxylase. 1986 FEBS Lett. pmid:2869975
Saggerson ED and Carpenter CA Malonyl CoA inhibition of carnitine acyltransferase activities: effects of thiol-group reagents. 1982 FEBS Lett. pmid:7067817
Saggerson ED and Carpenter CA Effects of fasting, adrenalectomy and streptozotocin-diabetes on sensitivity of hepatic carnitine acyltransferase to malonyl CoA. 1981 FEBS Lett. pmid:7286215
Saggerson ED and Carpenter CA Carnitine palmitoyltransferase and carnitine octanoyltransferase activities in liver, kidney cortex, adipocyte, lactating mammary gland, skeletal muscle and heart. 1981 FEBS Lett. pmid:7286216
Morillas M et al. Identification of the two histidine residues responsible for the inhibition by malonyl-CoA in peroxisomal carnitine octanoyltransferase from rat liver. 2000 FEBS Lett. pmid:10648838
Bessoule JJ et al. Fatty acid synthesis in mitochondria from Saccharomyces cerevisiae. 1987 FEBS Lett. pmid:3552725
Hoffmann A and Dimroth P Stereochemistry of the methylmalonyl-CoA decarboxylation reaction. 1987 FEBS Lett. pmid:3609308
Haydock SF et al. Divergent sequence motifs correlated with the substrate specificity of (methyl)malonyl-CoA:acyl carrier protein transacylase domains in modular polyketide synthases. 1995 FEBS Lett. pmid:7589545
Naganuma T et al. Biochemical characterization of the very long-chain fatty acid elongase ELOVL7. 2011 FEBS Lett. pmid:21959040
Clouet P et al. High sensitivity of carnitine acyltransferase I to malonyl-CoA inhibition in liver of obese Zucker rats. 1985 FEBS Lett. pmid:3979557
Smith S et al. Modification of mammalian fatty acid synthetase activity by NADP. 1985 FEBS Lett. pmid:4043381
Saggerson ED and Topping DL Glycerolphosphate acyltransferase, dihydroxyacetonephosphate acyltransferase and carnitine palmitoyltransferase in a glycogen storage disease (gsd/gsd) rat. 1981 FEBS Lett. pmid:6946003
Wolkowicz PE and Wood JM Effect of malonyl-CoA on calcium uptake and pyridine nucleotide redox state in rat liver mitochondria. 1979 FEBS Lett. pmid:221253
Pageaux JF et al. [Rapid induction of hepatic acetyl-CoA carboxylase activity after estradiol benzoate injection in the quail]. 1981 FEBS Lett. pmid:9222334
Kuhstoss S et al. Production of a novel polyketide through the construction of a hybrid polyketide synthase. 1996 Gene pmid:8996112
Zhang YQ et al. Connection of propionyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans. 2004 Genetics pmid:15514053
Wang Q et al. Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice. 2009 Hepatology pmid:19177596
Kollmann-Koch A and Eggerer H Nicotinic acid metabolism. Dimethylmaleate hydratase. 1984 Hoppe-Seyler's Z. Physiol. Chem. pmid:6489933
Nilsson LA et al. Prolactin suppresses malonyl-CoA concentration in human adipose tissue. 2009 Horm. Metab. Res. pmid:19551610
Sugden MC et al. Hyperthyroidism facilitates cardiac fatty acid oxidation through altered regulation of cardiac carnitine palmitoyltransferase: studies in vivo and with cardiac myocytes. 1999 Horm. Metab. Res. pmid:10422724
Beynen AC et al. Acute effects of insulin on fatty acid metabolism in isolated rat hepatocytes. 1980 Horm. Metab. Res. pmid:6107268
Guzmán M et al. Pre- and postnatal protein undernutrition increases hepatic carnitine palmitoyltransferase I activity and decreases enzyme sensitivity to inhibitors in the suckling rat. 1992 Horm. Metab. Res. pmid:1464412
Guertl B et al. Metabolic cardiomyopathies. 2000 Int J Exp Pathol pmid:11298185
Deshaies Y AMP kinase: heart, cancer and the CNS--view from the chair. 2008 Int J Obes (Lond) pmid:18719594
Lopaschuk GD AMP-activated protein kinase control of energy metabolism in the ischemic heart. 2008 Int J Obes (Lond) pmid:18719595
Lane MD et al. Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA. 2008 Int J Obes (Lond) pmid:18719599
Hozyasz KK et al. Malonylcarnitine in newborns with non-syndromic cleft lip with or without cleft palate. 2010 Int J Oral Sci pmid:21125791
Ghadiminejad I and Saggerson D Physiological state and the sensitivity of liver mitochondrial outer membrane carnitine palmitoyltransferase to malonyl-CoA. Correlations with assay temperature, salt concentration and membrane lipid composition. 1992 Int. J. Biochem. pmid:1397505
Veerkamp JH and Van Moerkerk HT Effect of various agents and conditions on palmitate oxidation by homogenates of rat liver and rat and human skeletal muscle. 1985 Int. J. Biochem. pmid:4076518
Ghadiminejad I and Saggerson D Use of mitochondrial inner membrane proteins and phospholipids to facilitate disengagement of the catalytic and malonyl-CoA binding components of carnitine palmitoyltransferase from liver mitochondrial outer membranes. 1992 Int. J. Biochem. pmid:1516729
Wahle KW and Paterson SM The utilization of methylmalonyl-CoA for branched-chain fatty-acid synthesis by preparations from bovine (Bos taurus) adipose tissue. 1979 Int. J. Biochem. pmid:478105
Kim YS et al. Malonyl-CoA decarboxylase in rat brain mitochondria. 1979 Int. J. Biochem. pmid:456730
Wang F et al. Inhibitive effect of zinc ion on fatty acid synthase from chicken liver. 2003 Int. J. Biochem. Cell Biol. pmid:12531252
Dulloo AG et al. Substrate cycling between de novo lipogenesis and lipid oxidation: a thermogenic mechanism against skeletal muscle lipotoxicity and glucolipotoxicity. 2004 Int. J. Obes. Relat. Metab. Disord. pmid:15592483
Griffin MJ and Sul HS Insulin regulation of fatty acid synthase gene transcription: roles of USF and SREBP-1c. 2004 IUBMB Life pmid:15814457
Ruderman NB and Dean D Malonyl CoA, long chain fatty acyl CoA and insulin resistance in skeletal muscle. 1998 J Basic Clin Physiol Pharmacol pmid:10212840
Singh P et al. Topological descriptors in modeling malonyl coenzyme A decarboxylase inhibitory activity: N-Alkyl-N-(1,1,1,3,3,3-hexafluoro-2-hydroxypropylphenyl)amide derivatives. 2009 J Enzyme Inhib Med Chem pmid:18608763
Ma SM et al. Enzymatic synthesis of aromatic polyketides using PKS4 from Gibberella fujikuroi. 2007 J. Am. Chem. Soc. pmid:17696354
Jeong JC et al. Exploiting the reaction flexibility of a type III polyketide synthase through in vitro pathway manipulation. 2005 J. Am. Chem. Soc. pmid:15631450
Abe I et al. A plant type III polyketide synthase that produces pentaketide chromone. 2005 J. Am. Chem. Soc. pmid:15686354
Kong R et al. Characterization of a carbonyl-conjugated polyene precursor in 10-membered enediyne biosynthesis. 2008 J. Am. Chem. Soc. pmid:18529057
Mo S et al. Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues. 2011 J. Am. Chem. Soc. pmid:21175203
Miyanaga A and Horinouchi S Enzymatic synthesis of bis-5-alkylresorcinols by resorcinol-producing type III polyketide synthases. 2009 J. Antibiot. pmid:19557027
Elayan IM and Winder WW Effect of glucose infusion on muscle malonyl-CoA during exercise. 1991 J. Appl. Physiol. pmid:2055826
Winder WW et al. Muscle malonyl-CoA decreases during exercise. 1989 J. Appl. Physiol. pmid:2558099
Park SH et al. Effects of thyroid state on AMP-activated protein kinase and acetyl-CoA carboxylase expression in muscle. 2002 J. Appl. Physiol. pmid:12433937
Maclean PS and Winder WW Caffeine decreases malonyl-CoA in isolated perfused skeletal muscle of rats. 1995 J. Appl. Physiol. pmid:7615461
Hutber CA et al. Endurance training attenuates the decrease in skeletal muscle malonyl-CoA with exercise. 1997 J. Appl. Physiol. pmid:9390963