Lignoceric acid

Lignoceric acid is a lipid of Fatty Acyls (FA) class. Lignoceric acid is associated with abnormalities such as Adrenoleukodystrophy and Peroxisomal Disorders. The involved functions are known as Anabolism, establishment and maintenance of localization, Saturated, Process and long-chain-fatty-acid-CoA ligase activity. Lignoceric acid often locates in Membrane, Microsomes, Plasma membrane, peroxisome and Mitochondria. The associated genes with Lignoceric acid are SLC27A1 gene, CD36 gene, F10 gene, INHA gene and ABCD1 gene. The related lipids are Sphingolipids, Fatty Acids, erucic acid, inositolphosphoceramides and Palmitates.

Cross Reference

Introduction

To understand associated biological information of Lignoceric acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Lignoceric acid?

Lignoceric acid is suspected in Peroxisomal Disorders, Adrenoleukodystrophy and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Lignoceric acid

MeSH term MeSH ID Detail
Sudden Infant Death D013398 3 associated lipids
Abetalipoproteinemia D000012 7 associated lipids
Chondrodysplasia Punctata D002806 8 associated lipids
Diffuse Cerebral Sclerosis of Schilder D002549 8 associated lipids
Hyperthyroidism D006980 12 associated lipids
Polycystic Kidney Diseases D007690 12 associated lipids
Refsum Disease D012035 19 associated lipids
Adrenoleukodystrophy D000326 29 associated lipids
Zellweger Syndrome D015211 39 associated lipids
Metabolic Syndrome D024821 44 associated lipids
Per page 10 20 | Total 14

PubChem Associated disorders and diseases

What pathways are associated with Lignoceric acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Lignoceric acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Lignoceric acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Lignoceric acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Lignoceric acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Lignoceric acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Lignoceric acid

Download all related citations
Per page 10 20 50 100 | Total 264
Authors Title Published Journal PubMed Link
Fretts AM et al. Associations of Plasma Phospholipid SFAs with Total and Cause-Specific Mortality in Older Adults Differ According to SFA Chain Length. 2016 J. Nutr. pmid:26701797
Tsuji S et al. Metabolism of [17,18-3H2]hexacosanoic acid and [15,16-3H2]lignoceric acid in cultured skin fibroblasts from patients with adrenoleukodystrophy (ALD) and adrenomyeloneuropathy (AMN). 1985 J. Neurol. Sci. pmid:4087029
Deon M et al. The effect of Lorenzo's oil on oxidative stress in X-linked adrenoleukodystrophy. 2006 J. Neurol. Sci. pmid:16750542
Lazo O et al. Postnatal development and isolation of peroxisomes from brain. 1991 J. Neurochem. pmid:2002347
Shigematsu H et al. Purification and characterization of the heat-stable factors essential for the conversion of lignoceric acid to cerebronic acid and glutamic acid: identification of N-acetyl-L-aspartic acid. 1983 J. Neurochem. pmid:6131106
Singh H et al. Mitochondrial and peroxisomal beta-oxidation of stearic and lignoceric acids by rat brain. 1989 J. Neurochem. pmid:2809586
Singh I and Kishimoto Y alpha-Hydroxylation of fatty acids in brain: characterization of heat-labile factor. 1981 J. Neurochem. pmid:7264665
Yoshida S and Takeshita M Characteristics of synthesis of very-long-chain saturated and tetraenoic fatty acids in swine cerebral microsomes. 1986 J. Neurochem. pmid:3958710
Singh I Ceramide synthesis from free fatty acids in rat brain: function of NADPH and substrate specificity. 1983 J. Neurochem. pmid:6854321
Bentejac M et al. Utilization of high-density lipoprotein sphingomyelin by the developing and mature brain in the rat. 1989 J. Neurochem. pmid:2709013
Harinantenaina L et al. Secondary metabolites of Cinnamosma madagascariensis and their alpha-glucosidase inhibitory properties. 2008 J. Nat. Prod. pmid:18179176
Razani SH et al. Fatty acid and carotenoid production by Sporobolomyces ruberrimus when using technical glycerol and ammonium sulfate. 2007 J. Microbiol. Biotechnol. pmid:18156773
Kusunoki M et al. Relationship between serum concentrations of saturated fatty acids and unsaturated fatty acids and the homeostasis model insulin resistance index in Japanese patients with type 2 diabetes mellitus. 2007 J. Med. Invest. pmid:17878672
Fabiano A et al. Metabolomic analysis of bronchoalveolar lavage fluid in preterm infants complicated by respiratory distress syndrome: preliminary results. 2011 J. Matern. Fetal. Neonatal. Med. pmid:21781003
Ohta M et al. Novel free ceramides as components of the soldier defense gland of the Formosan subterranean termite (Coptotermes formosanus). 2007 J. Lipid Res. pmid:17164223
Robert J et al. Glycosphingolipids from cultured astroblasts. 1977 J. Lipid Res. pmid:894142
Singh I and Kishimoto Y Effect of cyclodextrins on the solubilization of lignoceric acid, ceramide, and cerebroside, and on the enzymatic reactions involving these compounds. 1983 J. Lipid Res. pmid:6875391
Sandhir R et al. Localization of nervonic acid beta-oxidation in human and rodent peroxisomes: impaired oxidation in Zellweger syndrome and X-linked adrenoleukodystrophy. 1998 J. Lipid Res. pmid:9799802
Alderson NL et al. A novel method for the measurement of in vitro fatty acid 2-hydroxylase activity by gas chromatography-mass spectrometry. 2005 J. Lipid Res. pmid:15863841
Lazo O et al. Cellular oxidation of lignoceric acid is regulated by the subcellular localization of lignoceroyl-CoA ligases. 1990 J. Lipid Res. pmid:2141053