Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Stomach Ulcer D013276 75 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Breast Neoplasms D001943 24 associated lipids
Neoplasms D009369 13 associated lipids
Pain D010146 64 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Retinopathy D003930 39 associated lipids
Fatty Liver D005234 48 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Hypotension D007022 41 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Melanoma D008545 69 associated lipids
Weight Gain D015430 101 associated lipids
Hyperemia D006940 25 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Glioma D005910 112 associated lipids
Obesity D009765 29 associated lipids
Bradycardia D001919 13 associated lipids
Urinary Bladder Diseases D001745 4 associated lipids
Alzheimer Disease D000544 76 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Neuroblastoma D009447 66 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Peripheral Nervous System Diseases D010523 33 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Multiple Sclerosis D009103 13 associated lipids
Nervous System Diseases D009422 37 associated lipids
Ataxia D001259 20 associated lipids
Brain Edema D001929 20 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Brain Ischemia D002545 89 associated lipids
Epilepsy D004827 35 associated lipids
Seizures D012640 87 associated lipids
Nerve Degeneration D009410 53 associated lipids
Peptic Ulcer D010437 19 associated lipids
Hypertension D006973 115 associated lipids
Ischemic Attack, Transient D002546 42 associated lipids
Substance-Related Disorders D019966 2 associated lipids
Hepatitis D006505 11 associated lipids
Hyperalgesia D006930 42 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Brain Damage, Chronic D001925 6 associated lipids
Ventricular Fibrillation D014693 16 associated lipids
Fever D005334 35 associated lipids
Bronchial Spasm D001986 18 associated lipids
Morphine Dependence D009021 9 associated lipids
Shock, Septic D012772 11 associated lipids
Cough D003371 19 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Catalepsy D002375 30 associated lipids
Migraine Disorders D008881 11 associated lipids
Cardiomyopathy, Dilated D002311 15 associated lipids
Alveolar Bone Loss D016301 10 associated lipids
Learning Disorders D007859 11 associated lipids
Hyperkinesis D006948 11 associated lipids
Hyperinsulinism D006946 27 associated lipids
Muscle Spasticity D009128 5 associated lipids
Hypothermia D007035 19 associated lipids
Celiac Disease D002446 16 associated lipids
Dyskinesia, Drug-Induced D004409 15 associated lipids
Ventricular Dysfunction, Left D018487 33 associated lipids
Hypertension, Portal D006975 12 associated lipids
Insulin Resistance D007333 99 associated lipids
Sleep Apnea, Obstructive D020181 9 associated lipids
Brain Concussion D001924 5 associated lipids
Endotoxemia D019446 27 associated lipids
Anorexia D000855 8 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Memory Disorders D008569 33 associated lipids
Parkinson Disease, Secondary D010302 17 associated lipids
Overweight D050177 11 associated lipids
Neurodegenerative Diseases D019636 32 associated lipids
Pancreatitis, Acute Necrotizing D019283 18 associated lipids
Parkinsonian Disorders D020734 20 associated lipids
Neuralgia D009437 28 associated lipids
Fibromyalgia D005356 4 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Intestinal Pseudo-Obstruction D007418 5 associated lipids
Mycoses D009181 18 associated lipids
Bulimia D002032 3 associated lipids
Sleep Deprivation D012892 5 associated lipids
Urinary Incontinence D014549 4 associated lipids
Vascular System Injuries D057772 2 associated lipids
Cholangiocarcinoma D018281 7 associated lipids
Amnesia, Anterograde D020324 2 associated lipids
Pregnancy, Ectopic D011271 5 associated lipids
Ocular Hypotension D015814 2 associated lipids
Sciatic Neuropathy D020426 13 associated lipids
Impotence, Vasculogenic D018783 4 associated lipids
Cardiovirus Infections D018188 3 associated lipids
Picornaviridae Infections D010850 4 associated lipids
Somatosensory Disorders D020886 1 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
del Carmen García M et al. Hypotensive effect of anandamide through the activation of CB1 and VR1 spinal receptors in urethane-anesthetized rats. 2003 Naunyn Schmiedebergs Arch. Pharmacol. pmid:14504685
Barinaga M Pot, heroin unlock new areas for neuroscience. 1992 Science pmid:1335165
Hillard CJ and Jarrahian A Cellular accumulation of anandamide: consensus and controversy. 2003 Br. J. Pharmacol. pmid:12970089
Segall Y et al. Arachidonylsulfonyl derivatives as cannabinoid CB1 receptor and fatty acid amide hydrolase inhibitors. 2003 Bioorg. Med. Chem. Lett. pmid:12951114
Liu J et al. Lipopolysaccharide induces anandamide synthesis in macrophages via CD14/MAPK/phosphoinositide 3-kinase/NF-kappaB independently of platelet-activating factor. 2003 J. Biol. Chem. pmid:12949078
Fowler CJ et al. Inhibition of C6 glioma cell proliferation by anandamide, 1-arachidonoylglycerol, and by a water soluble phosphate ester of anandamide: variability in response and involvement of arachidonic acid. 2003 Biochem. Pharmacol. pmid:12948856
Franklin A et al. Palmitoylethanolamide increases after focal cerebral ischemia and potentiates microglial cell motility. 2003 J. Neurosci. pmid:12944505
Helyes Z et al. Inhibitory effect of anandamide on resiniferatoxin-induced sensory neuropeptide release in vivo and neuropathic hyperalgesia in the rat. 2003 Life Sci. pmid:12941436
Cravatt BF and Lichtman AH Fatty acid amide hydrolase: an emerging therapeutic target in the endocannabinoid system. 2003 Curr Opin Chem Biol pmid:12941421
Maccarrone M and Finazzi-Agró A The endocannabinoid system, anandamide and the regulation of mammalian cell apoptosis. 2003 Cell Death Differ. pmid:12934069
Fasia L et al. Uptake and metabolism of [3H]anandamide by rabbit platelets. Lack of transporter? 2003 Eur. J. Biochem. pmid:12919314
Dogulu FH et al. Intra-arterial simultaneous administration of anandamide attenuates endothelin-1 induced vasospasm in rabbit basilar arteries. 2003 Acta Neurochir (Wien) pmid:12910401
Storr M et al. Cannabinoid receptor type 1 modulates excitatory and inhibitory neurotransmission in mouse colon. 2004 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:12893627
Kozak KR et al. Amino acid determinants in cyclooxygenase-2 oxygenation of the endocannabinoid anandamide. 2003 Biochemistry pmid:12885237
Watanabe H et al. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. 2003 Nature pmid:12879072
Sokal DM et al. Intraplantar injection of anandamide inhibits mechanically-evoked responses of spinal neurones via activation of CB2 receptors in anaesthetised rats. 2003 Neuropharmacology pmid:12871657
Sarker KP and Maruyama I Anandamide induces cell death independently of cannabinoid receptors or vanilloid receptor 1: possible involvement of lipid rafts. 2003 Cell. Mol. Life Sci. pmid:12861385
González S et al. Region-dependent changes in endocannabinoid transmission in the brain of morphine-dependent rats. 2003 Addict Biol pmid:12850774
Patel S et al. The general anesthetic propofol increases brain N-arachidonylethanolamine (anandamide) content and inhibits fatty acid amide hydrolase. 2003 Br. J. Pharmacol. pmid:12839875
Bojesen IN and Hansen HS Binding of anandamide to bovine serum albumin. 2003 J. Lipid Res. pmid:12837852
Nicholson RA et al. Sodium channel inhibition by anandamide and synthetic cannabimimetics in brain. 2003 Brain Res. pmid:12834914
Obata T et al. Simultaneous determination of endocannabinoids (arachidonylethanolamide and 2-arachidonylglycerol) and isoprostane (8-epiprostaglandin F2alpha) by gas chromatography-mass spectrometry-selected ion monitoring for medical samples. 2003 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:12829006
Ahluwalia J et al. Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. 2003 Eur. J. Neurosci. pmid:12823468
Maccarrone M et al. The endocannabinoid system in human keratinocytes. Evidence that anandamide inhibits epidermal differentiation through CB1 receptor-dependent inhibition of protein kinase C, activation protein-1, and transglutaminase. 2003 J. Biol. Chem. pmid:12815050
Wilson SJ et al. A high-throughput-compatible assay for determining the activity of fatty acid amide hydrolase. 2003 Anal. Biochem. pmid:12814631
Klegeris A et al. Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. 2003 Br. J. Pharmacol. pmid:12813001
Shiraishi T et al. The presence of ceramidase activity in liver nuclear membrane. 2003 Biol. Pharm. Bull. pmid:12808285
Patel S et al. Differential regulation of the endocannabinoids anandamide and 2-arachidonylglycerol within the limbic forebrain by dopamine receptor activity. 2003 J. Pharmacol. Exp. Ther. pmid:12808005
Han J et al. Properties and modulation of the G protein-coupled K+ channel in rat cerebellar granule neurons: ATP versus phosphatidylinositol 4,5-bisphosphate. 2003 J. Physiol. (Lond.) pmid:12807991
Maccarrone M et al. Progesterone activates fatty acid amide hydrolase (FAAH) promoter in human T lymphocytes through the transcription factor Ikaros. Evidence for a synergistic effect of leptin. 2003 J. Biol. Chem. pmid:12799380
El Fangour S et al. Hemisynthesis and preliminary evaluation of novel endocannabinoid analogues. 2003 Bioorg. Med. Chem. Lett. pmid:12781177
Vásquez C et al. Effects of cannabinoids on endogenous K+ and Ca2+ currents in HEK293 cells. 2003 Can. J. Physiol. Pharmacol. pmid:12774849
Tarzia G et al. Design, synthesis, and structure-activity relationships of alkylcarbamic acid aryl esters, a new class of fatty acid amide hydrolase inhibitors. 2003 J. Med. Chem. pmid:12773040
Oz M et al. The endogenous cannabinoid anandamide inhibits alpha7 nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes. 2003 J. Pharmacol. Exp. Ther. pmid:12766252
Veldhuis WB et al. Neuroprotection by the endogenous cannabinoid anandamide and arvanil against in vivo excitotoxicity in the rat: role of vanilloid receptors and lipoxygenases. 2003 J. Neurosci. pmid:12764100
Ahern GP Activation of TRPV1 by the satiety factor oleoylethanolamide. 2003 J. Biol. Chem. pmid:12761211
Tóth A et al. Arachidonyl dopamine as a ligand for the vanilloid receptor VR1 of the rat. 2003 Life Sci. pmid:12759142
Fowler CJ et al. Acidic nonsteroidal anti-inflammatory drugs inhibit rat brain fatty acid amide hydrolase in a pH-dependent manner. 2003 J Enzyme Inhib Med Chem pmid:12751821
López-Rodríguez ML et al. Design, synthesis and biological evaluation of new endocannabinoid transporter inhibitors. 2003 Eur J Med Chem pmid:12750028
Mimeault M et al. Anti-proliferative and apoptotic effects of anandamide in human prostatic cancer cell lines: implication of epidermal growth factor receptor down-regulation and ceramide production. 2003 Prostate pmid:12746841
Hermann H et al. Dual effect of cannabinoid CB1 receptor stimulation on a vanilloid VR1 receptor-mediated response. 2003 Cell. Mol. Life Sci. pmid:12737320
Clement AB et al. Increased seizure susceptibility and proconvulsant activity of anandamide in mice lacking fatty acid amide hydrolase. 2003 J. Neurosci. pmid:12736361
Ortar G et al. Novel selective and metabolically stable inhibitors of anandamide cellular uptake. 2003 Biochem. Pharmacol. pmid:12732359
Juntunen J et al. Anandamide prodrugs. 1. Water-soluble phosphate esters of arachidonylethanolamide and R-methanandamide. 2003 Eur J Pharm Sci pmid:12729860
Yamaji K et al. Anandamide induces apoptosis in human endothelial cells: its regulation system and clinical implications. 2003 Thromb. Haemost. pmid:12719786
Maccarrone M The blissful state of endothelium. 2003 Thromb. Haemost. pmid:12719771
Marinelli S et al. Presynaptic facilitation of glutamatergic synapses to dopaminergic neurons of the rat substantia nigra by endogenous stimulation of vanilloid receptors. 2003 J. Neurosci. pmid:12716921
Maccarrone M et al. Levodopa treatment reverses endocannabinoid system abnormalities in experimental parkinsonism. 2003 J. Neurochem. pmid:12716433
Jonsson KO et al. AM404 and VDM 11 non-specifically inhibit C6 glioma cell proliferation at concentrations used to block the cellular accumulation of the endocannabinoid anandamide. 2003 Arch. Toxicol. pmid:12698235
Basavarajappa BS et al. Chronic ethanol inhibits the anandamide transport and increases extracellular anandamide levels in cerebellar granule neurons. 2003 Eur. J. Pharmacol. pmid:12679143