Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Stomach Ulcer D013276 75 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Breast Neoplasms D001943 24 associated lipids
Neoplasms D009369 13 associated lipids
Pain D010146 64 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Retinopathy D003930 39 associated lipids
Fatty Liver D005234 48 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Hypotension D007022 41 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Melanoma D008545 69 associated lipids
Weight Gain D015430 101 associated lipids
Hyperemia D006940 25 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Glioma D005910 112 associated lipids
Obesity D009765 29 associated lipids
Bradycardia D001919 13 associated lipids
Urinary Bladder Diseases D001745 4 associated lipids
Alzheimer Disease D000544 76 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Neuroblastoma D009447 66 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Peripheral Nervous System Diseases D010523 33 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Multiple Sclerosis D009103 13 associated lipids
Nervous System Diseases D009422 37 associated lipids
Ataxia D001259 20 associated lipids
Brain Edema D001929 20 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Brain Ischemia D002545 89 associated lipids
Epilepsy D004827 35 associated lipids
Seizures D012640 87 associated lipids
Nerve Degeneration D009410 53 associated lipids
Peptic Ulcer D010437 19 associated lipids
Hypertension D006973 115 associated lipids
Ischemic Attack, Transient D002546 42 associated lipids
Substance-Related Disorders D019966 2 associated lipids
Hepatitis D006505 11 associated lipids
Hyperalgesia D006930 42 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Brain Damage, Chronic D001925 6 associated lipids
Ventricular Fibrillation D014693 16 associated lipids
Fever D005334 35 associated lipids
Bronchial Spasm D001986 18 associated lipids
Morphine Dependence D009021 9 associated lipids
Shock, Septic D012772 11 associated lipids
Cough D003371 19 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Catalepsy D002375 30 associated lipids
Migraine Disorders D008881 11 associated lipids
Cardiomyopathy, Dilated D002311 15 associated lipids
Alveolar Bone Loss D016301 10 associated lipids
Learning Disorders D007859 11 associated lipids
Hyperkinesis D006948 11 associated lipids
Hyperinsulinism D006946 27 associated lipids
Muscle Spasticity D009128 5 associated lipids
Hypothermia D007035 19 associated lipids
Celiac Disease D002446 16 associated lipids
Dyskinesia, Drug-Induced D004409 15 associated lipids
Ventricular Dysfunction, Left D018487 33 associated lipids
Hypertension, Portal D006975 12 associated lipids
Insulin Resistance D007333 99 associated lipids
Sleep Apnea, Obstructive D020181 9 associated lipids
Brain Concussion D001924 5 associated lipids
Endotoxemia D019446 27 associated lipids
Anorexia D000855 8 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Memory Disorders D008569 33 associated lipids
Parkinson Disease, Secondary D010302 17 associated lipids
Overweight D050177 11 associated lipids
Neurodegenerative Diseases D019636 32 associated lipids
Pancreatitis, Acute Necrotizing D019283 18 associated lipids
Parkinsonian Disorders D020734 20 associated lipids
Neuralgia D009437 28 associated lipids
Fibromyalgia D005356 4 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Intestinal Pseudo-Obstruction D007418 5 associated lipids
Mycoses D009181 18 associated lipids
Bulimia D002032 3 associated lipids
Sleep Deprivation D012892 5 associated lipids
Urinary Incontinence D014549 4 associated lipids
Vascular System Injuries D057772 2 associated lipids
Cholangiocarcinoma D018281 7 associated lipids
Amnesia, Anterograde D020324 2 associated lipids
Pregnancy, Ectopic D011271 5 associated lipids
Ocular Hypotension D015814 2 associated lipids
Sciatic Neuropathy D020426 13 associated lipids
Impotence, Vasculogenic D018783 4 associated lipids
Cardiovirus Infections D018188 3 associated lipids
Picornaviridae Infections D010850 4 associated lipids
Somatosensory Disorders D020886 1 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Bilmin K et al. Influence of serum and albumin on the in vitro anandamide cytotoxicity toward C6 glioma cells assessed by the MTT cell viability assay: implications for the methodology of the MTT tests. 2013 Folia Neuropathol pmid:23553136
Li H et al. Inhibition of fatty acid amide hydrolase activates Nrf2 signalling and induces heme oxygenase 1 transcription in breast cancer cells. 2013 Br. J. Pharmacol. pmid:23347118
Feuerecker M et al. Effect of an acute consumption of a moderate amount of ethanol on plasma endocannabinoid levels in humans. 2012 May-Jun Alcohol Alcohol. pmid:22278319
Okine BN et al. Lack of effect of chronic pre-treatment with the FAAH inhibitor URB597 on inflammatory pain behaviour: evidence for plastic changes in the endocannabinoid system. 2012 Br. J. Pharmacol. pmid:22595021
Miyashita K et al. Anandamide induces matrix metalloproteinase-2 production through cannabinoid-1 receptor and transient receptor potential vanilloid-1 in human dental pulp cells in culture. 2012 J Endod pmid:22595113
Vinod KY et al. Dysfunction in fatty acid amide hydrolase is associated with depressive-like behavior in Wistar Kyoto rats. 2012 PLoS ONE pmid:22606285
Hutchins-Wiese HL et al. Hind limb suspension and long-chain omega-3 PUFA increase mRNA endocannabinoid system levels in skeletal muscle. 2012 J. Nutr. Biochem. pmid:22051448
Haas MJ et al. Inhibition of apolipoprotein A-I gene expression by obesity-associated endocannabinoids. 2012 Obesity (Silver Spring) pmid:22016100
Heyman E et al. Intense exercise increases circulating endocannabinoid and BDNF levels in humans--possible implications for reward and depression. 2012 Psychoneuroendocrinology pmid:22029953
Izumi Y and Zorumski CF NMDA receptors, mGluR5, and endocannabinoids are involved in a cascade leading to hippocampal long-term depression. 2012 Neuropsychopharmacology pmid:21993209
Forsell PK et al. Metabolism of anandamide into eoxamides by 15-lipoxygenase-1 and glutathione transferases. 2012 Lipids pmid:22684912
Rogers TJ The molecular basis for neuroimmune receptor signaling. 2012 J Neuroimmune Pharmacol pmid:22935971
Sharir H et al. The endocannabinoids anandamide and virodhamine modulate the activity of the candidate cannabinoid receptor GPR55. 2012 J Neuroimmune Pharmacol pmid:22454039
Shi RZ et al. Decreased anandamide transporter activity and calcitonin gene-related peptide production in spontaneously hypertensive rats: role of angiotensin II. 2012 Eur. J. Pharmacol. pmid:22318155
Battista N et al. The role of endocannabinoids in gonadal function and fertility along the evolutionary axis. 2012 Mol. Cell. Endocrinol. pmid:22305972
Liu J et al. Hepatic cannabinoid receptor-1 mediates diet-induced insulin resistance via inhibition of insulin signaling and clearance in mice. 2012 Gastroenterology pmid:22307032
Fowler CJ Anandamide uptake explained? 2012 Trends Pharmacol. Sci. pmid:22297258
Izzo AA et al. Inhibitory effect of cannabichromene, a major non-psychotropic cannabinoid extracted from Cannabis sativa, on inflammation-induced hypermotility in mice. 2012 Br. J. Pharmacol. pmid:22300105
Chon SH et al. Over-expression of monoacylglycerol lipase (MGL) in small intestine alters endocannabinoid levels and whole body energy balance, resulting in obesity. 2012 PLoS ONE pmid:22937137
Brown WH et al. Fatty acid amide hydrolase ablation promotes ectopic lipid storage and insulin resistance due to centrally mediated hypothyroidism. 2012 Proc. Natl. Acad. Sci. U.S.A. pmid:22912404
Schreiber AK et al. Peripheral antinociceptive effect of anandamide and drugs that affect the endocannabinoid system on the formalin test in normal and streptozotocin-diabetic rats. 2012 Neuropharmacology pmid:22959964
Lowin T et al. Cortisol-mediated adhesion of synovial fibroblasts is dependent on the degradation of anandamide and activation of the endocannabinoid system. 2012 Arthritis Rheum. pmid:22933357
Alhouayek M and Muccioli GG The endocannabinoid system in inflammatory bowel diseases: from pathophysiology to therapeutic opportunity. 2012 Trends Mol Med pmid:22917662
Sanchez AM et al. The molecular connections between the cannabinoid system and endometriosis. 2012 Mol. Hum. Reprod. pmid:22923487
Thomas KC et al. Contributions of TRPV1, endovanilloids, and endoplasmic reticulum stress in lung cell death in vitro and lung injury. 2012 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:21949157
Woodhams SG et al. Spinal administration of the monoacylglycerol lipase inhibitor JZL184 produces robust inhibitory effects on nociceptive processing and the development of central sensitization in the rat. 2012 Br. J. Pharmacol. pmid:22924700
Wheal AJ et al. Hydrogen peroxide as a mediator of vasorelaxation evoked by N-oleoylethanolamine and anandamide in rat small mesenteric arteries. 2012 Eur. J. Pharmacol. pmid:22154756
Li Q et al. Effects of anandamide on potassium channels in rat ventricular myocytes: a suppression of I(to) and augmentation of K(ATP) channels. 2012 Am. J. Physiol., Cell Physiol. pmid:22173869
Stock K et al. Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1. 2012 Nat. Med. pmid:22820645
Jang Y et al. Axonal neuropathy-associated TRPV4 regulates neurotrophic factor-derived axonal growth. 2012 J. Biol. Chem. pmid:22187434
Marsicano G and Chaouloff F Moving bliss: a new anandamide transporter. 2012 Nat. Neurosci. pmid:22193249
Battista N et al. Abnormal anandamide metabolism in celiac disease. 2012 J. Nutr. Biochem. pmid:22209002
Schulte K et al. Cannabinoid CB1 receptor activation, pharmacological blockade, or genetic ablation affects the function of the muscarinic auto- and heteroreceptor. 2012 Naunyn Schmiedebergs Arch. Pharmacol. pmid:22215206
Wu X et al. Alteration of endocannabinoid system in human gliomas. 2012 J. Neurochem. pmid:22176552
Rettori E et al. Anti-inflammatory effect of the endocannabinoid anandamide in experimental periodontitis and stress in the rat. 2012 Neuroimmunomodulation pmid:22777139
Luchicchi A and Pistis M Anandamide and 2-arachidonoylglycerol: pharmacological properties, functional features, and emerging specificities of the two major endocannabinoids. 2012 Mol. Neurobiol. pmid:22801993
Krishnan G and Chatterjee N Endocannabinoids alleviate proinflammatory conditions by modulating innate immune response in muller glia during inflammation. 2012 Glia pmid:22807196
Romano MR and Lograno MD Involvement of the peroxisome proliferator-activated receptor (PPAR) alpha in vascular response of endocannabinoids in the bovine ophthalmic artery. 2012 Eur. J. Pharmacol. pmid:22429572
Xiong W et al. A common molecular basis for exogenous and endogenous cannabinoid potentiation of glycine receptors. 2012 J. Neurosci. pmid:22496565
Kenessey I et al. Revisiting CB1 receptor as drug target in human melanoma. 2012 Pathol. Oncol. Res. pmid:22447182
Petrovszki Z et al. The effects of peptide and lipid endocannabinoids on arthritic pain at the spinal level. 2012 Anesth. Analg. pmid:22451592
Tamaki C et al. Anandamide induces endothelium-dependent vasoconstriction and CGRPergic nerve-mediated vasodilatation in the rat mesenteric vascular bed. 2012 J. Pharmacol. Sci. pmid:22510966
Czifra G et al. Endocannabinoids regulate growth and survival of human eccrine sweat gland-derived epithelial cells. 2012 J. Invest. Dermatol. pmid:22513781
Miller LL et al. Effects of alterations in cannabinoid signaling, alone and in combination with morphine, on pain-elicited and pain-suppressed behavior in mice. 2012 J. Pharmacol. Exp. Ther. pmid:22514333
Caprioli A et al. The novel reversible fatty acid amide hydrolase inhibitor ST4070 increases endocannabinoid brain levels and counteracts neuropathic pain in different animal models. 2012 J. Pharmacol. Exp. Ther. pmid:22514334
Simpson CD et al. A genome wide shRNA screen identifies α/β hydrolase domain containing 4 (ABHD4) as a novel regulator of anoikis resistance. 2012 Apoptosis pmid:22488300
Dubreucq S et al. Genetic dissection of the role of cannabinoid type-1 receptors in the emotional consequences of repeated social stress in mice. 2012 Neuropsychopharmacology pmid:22434220
Pucci M et al. Endocannabinoids stimulate human melanogenesis via type-1 cannabinoid receptor. 2012 J. Biol. Chem. pmid:22431736
McLaughlin RJ et al. Prefrontal cortical anandamide signaling coordinates coping responses to stress through a serotonergic pathway. 2012 Eur Neuropsychopharmacol pmid:22325231
Monteleone P et al. Hedonic eating is associated with increased peripheral levels of ghrelin and the endocannabinoid 2-arachidonoyl-glycerol in healthy humans: a pilot study. 2012 J. Clin. Endocrinol. Metab. pmid:22442280
Ritter JK et al. Production and actions of the anandamide metabolite prostamide E2 in the renal medulla. 2012 J. Pharmacol. Exp. Ther. pmid:22685343
Gebeh AK et al. Ectopic pregnancy is associated with high anandamide levels and aberrant expression of FAAH and CB1 in fallopian tubes. 2012 J. Clin. Endocrinol. Metab. pmid:22701012
Chianese R et al. Anandamide regulates the expression of GnRH1, GnRH2, and GnRH-Rs in frog testis. 2012 Am. J. Physiol. Endocrinol. Metab. pmid:22669247
Chicca A et al. The antinociceptive triterpene β-amyrin inhibits 2-arachidonoylglycerol (2-AG) hydrolysis without directly targeting cannabinoid receptors. 2012 Br. J. Pharmacol. pmid:22646533
Hernangómez M et al. CD200-CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. 2012 Glia pmid:22653796
Méndez-Díaz M et al. The endocannabinoid system modulates the valence of the emotion associated to food ingestion. 2012 Addict Biol pmid:21182571
De Petrocellis L et al. A re-evaluation of 9-HODE activity at TRPV1 channels in comparison with anandamide: enantioselectivity and effects at other TRP channels and in sensory neurons. 2012 Br. J. Pharmacol. pmid:22861649
Gatta L et al. Discovery of prostamide F2α and its role in inflammatory pain and dorsal horn nociceptive neuron hyperexcitability. 2012 PLoS ONE pmid:22363560
Berger WT et al. Targeting fatty acid binding protein (FABP) anandamide transporters - a novel strategy for development of anti-inflammatory and anti-nociceptive drugs. 2012 PLoS ONE pmid:23236415
Kuc C et al. Arachidonoyl ethanolamide (AEA)-induced apoptosis is mediated by J-series prostaglandins and is enhanced by fatty acid amide hydrolase (FAAH) blockade. 2012 Mol. Carcinog. pmid:21432910
Proto MC et al. Interaction of endocannabinoid system and steroid hormones in the control of colon cancer cell growth. 2012 J. Cell. Physiol. pmid:21412772
Skaper SD and Di Marzo V Endocannabinoids in nervous system health and disease: the big picture in a nutshell. 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108539
Booker L et al. The fatty acid amide hydrolase (FAAH) inhibitor PF-3845 acts in the nervous system to reverse LPS-induced tactile allodynia in mice. 2012 Br. J. Pharmacol. pmid:21506952
Di Marzo V and De Petrocellis L Why do cannabinoid receptors have more than one endogenous ligand? 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108541
Puighermanal E et al. Cellular and intracellular mechanisms involved in the cognitive impairment of cannabinoids. 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108544
Starowicz K and Przewlocka B Modulation of neuropathic-pain-related behaviour by the spinal endocannabinoid/endovanilloid system. 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108547
Rani Sagar D et al. Dynamic changes to the endocannabinoid system in models of chronic pain. 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108548
Campos AC et al. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108553
Alvheim AR et al. Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity. 2012 Obesity (Silver Spring) pmid:22334255
Jones BR et al. Surrogate matrix and surrogate analyte approaches for definitive quantitation of endogenous biomolecules. 2012 Bioanalysis pmid:23088461
McHugh D et al. Δ(9) -Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells. 2012 Br. J. Pharmacol. pmid:21595653
Engeli S et al. Circulating anandamide and blood pressure in patients with obstructive sleep apnea. 2012 J. Hypertens. pmid:23032139
Hauer D et al. Glucocorticoid-endocannabinoid interaction in cardiac surgical patients: relationship to early cognitive dysfunction and late depression. 2012 Rev Neurosci pmid:23006898
Butti E et al. Subventricular zone neural progenitors protect striatal neurons from glutamatergic excitotoxicity. 2012 Brain pmid:23008234
Roa-Coria JE et al. N-(4-Methoxy-2-nitrophenyl)hexadecanamide, a palmitoylethanolamide analogue, reduces formalin-induced nociception. 2012 Life Sci. pmid:23069585
Schmidt W et al. Cannabinoid receptor subtypes 1 and 2 mediate long-lasting neuroprotection and improve motor behavior deficits after transient focal cerebral ischemia. 2012 Neuroscience pmid:23069763
Pastuhov SI et al. Endocannabinoid-Goα signalling inhibits axon regeneration in Caenorhabditis elegans by antagonizing Gqα-PKC-JNK signalling. 2012 Nat Commun pmid:23072806
Jung KM et al. An amyloid β42-dependent deficit in anandamide mobilization is associated with cognitive dysfunction in Alzheimer's disease. 2012 Neurobiol. Aging pmid:21546126
Scherma M et al. The anandamide transport inhibitor AM404 reduces the rewarding effects of nicotine and nicotine-induced dopamine elevations in the nucleus accumbens shell in rats. 2012 Br. J. Pharmacol. pmid:21557729
Osycka-Salut C et al. Anandamide induces sperm release from oviductal epithelia through nitric oxide pathway in bovines. 2012 PLoS ONE pmid:22363468
Vinod KY et al. Innate difference in the endocannabinoid signaling and its modulation by alcohol consumption in alcohol-preferring sP rats. 2012 Addict Biol pmid:21309960
Lipina C et al. New vistas for treatment of obesity and diabetes? Endocannabinoid signalling and metabolism in the modulation of energy balance. 2012 Bioessays pmid:22674489
Fu J et al. A catalytically silent FAAH-1 variant drives anandamide transport in neurons. 2012 Nat. Neurosci. pmid:22101642
Feuerecker M et al. Effects of exercise stress on the endocannabinoid system in humans under field conditions. 2012 Eur. J. Appl. Physiol. pmid:22101870
Reyes-Cabello C et al. Effects of the anandamide uptake blocker AM404 on food intake depend on feeding status and route of administration. 2012 Pharmacol. Biochem. Behav. pmid:22133635
Psychoyos D et al. Cannabinoid receptor 1 signaling in embryo neurodevelopment. 2012 Birth Defects Res. B Dev. Reprod. Toxicol. pmid:22311661
Zoerner AA et al. Simultaneous UPLC-MS/MS quantification of the endocannabinoids 2-arachidonoyl glycerol (2AG), 1-arachidonoyl glycerol (1AG), and anandamide in human plasma: minimization of matrix-effects, 2AG/1AG isomerization and degradation by toluene solvent extraction. 2012 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:21752730
Sordelli MS et al. Cyclooxygenase-2 prostaglandins mediate anandamide-inhibitory action on nitric oxide synthase activity in the receptive rat uterus. 2012 Eur. J. Pharmacol. pmid:22554772
Roy A et al. Anandamide modulates carotid sinus nerve afferent activity via TRPV1 receptors increasing responses to heat. 2012 J. Appl. Physiol. pmid:21903882
Butler RK et al. Fear-induced suppression of nociceptive behaviour and activation of Akt signalling in the rat periaqueductal grey: role of fatty acid amide hydrolase. 2012 J. Psychopharmacol. (Oxford) pmid:21926424
Czikora Á et al. Vascular metabolism of anandamide to arachidonic acid affects myogenic constriction in response to intraluminal pressure elevation. 2012 Life Sci. pmid:22285599
Alger BE Endocannabinoids at the synapse a decade after the dies mirabilis (29 March 2001): what we still do not know. 2012 J. Physiol. (Lond.) pmid:22289914
Khasabova IA et al. Cannabinoid type-1 receptor reduces pain and neurotoxicity produced by chemotherapy. 2012 J. Neurosci. pmid:22593077
Sun Y et al. Cannabinoid receptor activation disrupts the internal structure of hippocampal sharp wave-ripple complexes. 2012 J. Pharmacol. Sci. pmid:22293299
Edwards JG et al. A novel non-CB1/TRPV1 endocannabinoid-mediated mechanism depresses excitatory synapses on hippocampal CA1 interneurons. 2012 Hippocampus pmid:21069781
Haruta C [Effects of anandamide on IL-11 production through the TRPV1 of human periodontal ligament cells]. 2012 Kokubyo Gakkai Zasshi pmid:22568077
Katona I and Freund TF Multiple functions of endocannabinoid signaling in the brain. 2012 Annu. Rev. Neurosci. pmid:22524785
Tong S et al. Diagnostic accuracy of maternal serum macrophage inhibitory cytokine-1 and pregnancy-associated plasma protein-A at 6-10 weeks of gestation to predict miscarriage. 2012 Obstet Gynecol pmid:22525911
Baranowska-Kuczko M et al. Endothelium-dependent mechanisms of the vasodilatory effect of the endocannabinoid, anandamide, in the rat pulmonary artery. 2012 Pharmacol. Res. pmid:22627170
Gould GG et al. Acetaminophen differentially enhances social behavior and cortical cannabinoid levels in inbred mice. 2012 Prog. Neuropsychopharmacol. Biol. Psychiatry pmid:22542870