Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Sleep Disorders, Intrinsic D020919 1 associated lipids
Headache Disorders, Secondary D051271 1 associated lipids
Somatosensory Disorders D020886 1 associated lipids
Orthostatic Intolerance D054971 1 associated lipids
Substance-Related Disorders D019966 2 associated lipids
Ocular Hypotension D015814 2 associated lipids
Vascular System Injuries D057772 2 associated lipids
Amnesia, Anterograde D020324 2 associated lipids
Schistosomiasis japonica D012554 3 associated lipids
Bulimia D002032 3 associated lipids
Acute Pain D059787 3 associated lipids
Cardiovirus Infections D018188 3 associated lipids
Impotence, Vasculogenic D018783 4 associated lipids
Urinary Bladder Diseases D001745 4 associated lipids
Urinary Incontinence D014549 4 associated lipids
Picornaviridae Infections D010850 4 associated lipids
Fibromyalgia D005356 4 associated lipids
Intestinal Pseudo-Obstruction D007418 5 associated lipids
Pregnancy, Ectopic D011271 5 associated lipids
Muscle Spasticity D009128 5 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Smart D et al. 'Entourage' effects of N-acyl ethanolamines at human vanilloid receptors. Comparison of effects upon anandamide-induced vanilloid receptor activation and upon anandamide metabolism. 2002 Br. J. Pharmacol. pmid:12023948
Kirkham TC et al. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. 2002 Br. J. Pharmacol. pmid:12055133
Ross RA Anandamide and vanilloid TRPV1 receptors. 2003 Br. J. Pharmacol. pmid:14517174
Malinowska B et al. Triphasic blood pressure responses to cannabinoids: do we understand the mechanism? 2012 Br. J. Pharmacol. pmid:22022923
Akerman S et al. Anandamide acts as a vasodilator of dural blood vessels in vivo by activating TRPV1 receptors. 2004 Br. J. Pharmacol. pmid:15277315
Thors L et al. Inhibition of the cellular uptake of anandamide by genistein and its analogue daidzein in cells with different levels of fatty acid amide hydrolase-driven uptake. 2007 Br. J. Pharmacol. pmid:17676056
Smart D et al. The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). 2000 Br. J. Pharmacol. pmid:10694225
Gardiner SM et al. Factors influencing the regional haemodynamic responses to methanandamide and anandamide in conscious rats. 2009 Br. J. Pharmacol. pmid:19702785
Pertwee RG et al. Cross-tolerance between delta-9-tetrahydrocannabinol and the cannabimimetic agents, CP 55,940, WIN 55,212-2 and anandamide. 1993 Br. J. Pharmacol. pmid:8306090
Zakrzeska A et al. A cannabinoid receptor, sensitive to O-1918, is involved in the delayed hypotension induced by anandamide in anaesthetized rats. 2010 Br. J. Pharmacol. pmid:20105178
Whyte LS et al. Cannabinoids and bone: endocannabinoids modulate human osteoclast function in vitro. 2012 Br. J. Pharmacol. pmid:21649637
Wheal AJ et al. Vasorelaxation to N-oleoylethanolamine in rat isolated arteries: mechanisms of action and modulation via cyclooxygenase activity. 2010 Br. J. Pharmacol. pmid:20590573
Gutierrez-Lopez MD et al. Involvement of 2-arachidonoyl glycerol in the increased consumption of and preference for ethanol of mice treated with neurotoxic doses of methamphetamine. 2010 Br. J. Pharmacol. pmid:20590579
Mechoulam R Plant cannabinoids: a neglected pharmacological treasure trove. 2005 Br. J. Pharmacol. pmid:16205721
Aquila S et al. Rimonabant (SR141716) induces metabolism and acquisition of fertilizing ability in human sperm. 2010 Br. J. Pharmacol. pmid:20067470
Movahed P et al. Vascular effects of anandamide and N-acylvanillylamines in the human forearm and skin microcirculation. 2005 Br. J. Pharmacol. pmid:15997233
Gaskari SA et al. Role of endocannabinoids in the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. 2005 Br. J. Pharmacol. pmid:16025138
Pei R et al. Low-fat yogurt consumption reduces biomarkers of chronic inflammation and inhibits markers of endotoxin exposure in healthy premenopausal women: a randomised controlled trial. 2017 Br. J. Nutr. pmid:29179781
Morgan CJ et al. Cerebrospinal fluid anandamide levels, cannabis use and psychotic-like symptoms. 2013 Br J Psychiatry pmid:23580381
Koethe D et al. Anandamide elevation in cerebrospinal fluid in initial prodromal states of psychosis. 2009 Br J Psychiatry pmid:19336792
Jarzimski C et al. Changes of blood endocannabinoids during anaesthesia: a special case for fatty acid amide hydrolase inhibition by propofol? 2012 Br J Clin Pharmacol pmid:22242687
Lam PM et al. Characterization and comparison of recombinant human and rat TRPV1 receptors: effects of exo- and endocannabinoids. 2005 Br J Anaesth pmid:15722382
Davies JW et al. Pharmacology of capsaicin-, anandamide-, and N-arachidonoyl-dopamine-evoked cell death in a homogeneous transient receptor potential vanilloid subtype 1 receptor population. 2010 Br J Anaesth pmid:20354008
Weis F et al. Effect of anaesthesia and cardiopulmonary bypass on blood endocannabinoid concentrations during cardiac surgery. 2010 Br J Anaesth pmid:20525978
Jerman JC et al. Comparison of effects of anandamide at recombinant and endogenous rat vanilloid receptors. 2002 Br J Anaesth pmid:12453933
Rossi F et al. The endovanilloid/endocannabinoid system in human osteoclasts: possible involvement in bone formation and resorption. 2009 Bone pmid:19059369
Gesell FK et al. Alterations of endocannabinoids in cerebrospinal fluid of dogs with epileptic seizure disorder. 2013 BMC Vet. Res. pmid:24370333
Kumar S Computational identification and binding analysis of orphan human cytochrome P450 4X1 enzyme with substrates. 2015 BMC Res Notes pmid:25595103
Cipriano M et al. The influence of monoacylglycerol lipase inhibition upon the expression of epidermal growth factor receptor in human PC-3 prostate cancer cells. 2014 BMC Res Notes pmid:25012825
Hayase T Differential effects of TRPV1 receptor ligands against nicotine-induced depression-like behaviors. 2011 BMC Pharmacol. pmid:21767384
Neelamegan D et al. Identification and recombinant expression of anandamide hydrolyzing enzyme from Dictyostelium discoideum. 2012 BMC Microbiol. pmid:22730904
Bradshaw HB et al. The endocannabinoid anandamide is a precursor for the signaling lipid N-arachidonoyl glycine by two distinct pathways. 2009 BMC Biochem. pmid:19460156
Maccarrone M et al. Estrogen stimulates arachidonoylethanolamide release from human endothelial cells and platelet activation. 2002 Blood pmid:12393387
Valk P et al. Anandamide, a natural ligand for the peripheral cannabinoid receptor is a novel synergistic growth factor for hematopoietic cells. 1997 Blood pmid:9269762
Ghasemi M et al. Anandamide improves the impaired nitric oxide-mediated neurogenic relaxation of the corpus cavernosum in diabetic rats: involvement of cannabinoid CB1 and vanilloid VR1 receptors. 2007 BJU Int. pmid:17850365
Nallendran V et al. The plasma levels of the endocannabinoid, anandamide, increase with the induction of labour. 2010 BJOG pmid:20406230
Psychoyos D et al. Cannabinoid receptor 1 signaling in embryo neurodevelopment. 2012 Birth Defects Res. B Dev. Reprod. Toxicol. pmid:22311661
Morefield SI et al. Drug evaluations using neuronal networks cultured on microelectrode arrays. 2000 Biosens Bioelectron pmid:11219752
Boger DL et al. alpha-Keto heterocycle inhibitors of fatty acid amide hydrolase: carbonyl group modification and alpha-substitution. 2001 Bioorg. Med. Chem. Lett. pmid:11412972
Sit SY et al. Novel inhibitors of fatty acid amide hydrolase. 2007 Bioorg. Med. Chem. Lett. pmid:17459705
El Fangour S et al. Hemisynthesis and preliminary evaluation of novel endocannabinoid analogues. 2003 Bioorg. Med. Chem. Lett. pmid:12781177
Parkkari T et al. Synthesis and CB1 receptor activities of novel arachidonyl alcohol derivatives. 2004 Bioorg. Med. Chem. Lett. pmid:15149681
Segall Y et al. Arachidonylsulfonyl derivatives as cannabinoid CB1 receptor and fatty acid amide hydrolase inhibitors. 2003 Bioorg. Med. Chem. Lett. pmid:12951114
Ortar G et al. New tetrazole-based selective anandamide uptake inhibitors. 2008 Bioorg. Med. Chem. Lett. pmid:18424134
Balas L et al. Synthesis of a potential photoactivatable anandamide analog. 2006 Bioorg. Med. Chem. Lett. pmid:16682198
Yao F et al. Development of novel tail-modified anandamide analogs. 2008 Bioorg. Med. Chem. Lett. pmid:18723350
Urbani P et al. New metabolically stable fatty acid amide ligands of cannabinoid receptors: Synthesis and receptor affinity studies. 2006 Bioorg. Med. Chem. Lett. pmid:16213718
Aneetha H et al. Alcohol dehydrogenase-catalyzed in vitro oxidation of anandamide to N-arachidonoyl glycine, a lipid mediator: synthesis of N-acyl glycinals. 2009 Bioorg. Med. Chem. Lett. pmid:19013794
Duarte CD et al. Synthesis, pharmacological evaluation and electrochemical studies of novel 6-nitro-3,4-methylenedioxyphenyl-N-acylhydrazone derivatives: Discovery of LASSBio-881, a new ligand of cannabinoid receptors. 2007 Bioorg. Med. Chem. pmid:17275312
Kono M et al. Design, synthesis, and biological evaluation of a series of piperazine ureas as fatty acid amide hydrolase inhibitors. 2014 Bioorg. Med. Chem. pmid:24440478