Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Stomach Ulcer D013276 75 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Breast Neoplasms D001943 24 associated lipids
Neoplasms D009369 13 associated lipids
Pain D010146 64 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Retinopathy D003930 39 associated lipids
Fatty Liver D005234 48 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Hypotension D007022 41 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Melanoma D008545 69 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Laviolette SR and Grace AA The roles of cannabinoid and dopamine receptor systems in neural emotional learning circuits: implications for schizophrenia and addiction. 2006 Cell. Mol. Life Sci. pmid:16699809
Wang Y et al. A novel scintillation proximity assay for fatty acid amide hydrolase compatible with inhibitor screening. 2006 Anal. Biochem. pmid:16707086
Avelino A and Cruz F TRPV1 (vanilloid receptor) in the urinary tract: expression, function and clinical applications. 2006 Naunyn Schmiedebergs Arch. Pharmacol. pmid:16721555
Zaniewska M et al. Evaluation of the role of nicotinic acetylcholine receptor subtypes and cannabinoid system in the discriminative stimulus effects of nicotine in rats. 2006 Eur. J. Pharmacol. pmid:16730696
Harada N et al. Antithrombin reduces endotoxin-induced hypotension by enhancing pulmonary sensory neuron activation in rats. 2006 Thromb. Haemost. pmid:16732381
van der Stelt M et al. Endocannabinoids and beta-amyloid-induced neurotoxicity in vivo: effect of pharmacological elevation of endocannabinoid levels. 2006 Cell. Mol. Life Sci. pmid:16732431
Dickason-Chesterfield AK et al. Pharmacological characterization of endocannabinoid transport and fatty acid amide hydrolase inhibitors. 2006 Jul-Aug Cell. Mol. Neurobiol. pmid:16736384
Fisyunov A et al. Cannabinoids modulate the P-type high-voltage-activated calcium currents in purkinje neurons. 2006 J. Neurophysiol. pmid:16738209
Krishtal O et al. The agonists for nociceptors are ubiquitous, but the modulators are specific: P2X receptors in the sensory neurons are modulated by cannabinoids. 2006 Pflugers Arch. pmid:16741755
Costa B et al. AM404, an inhibitor of anandamide uptake, prevents pain behaviour and modulates cytokine and apoptotic pathways in a rat model of neuropathic pain. 2006 Br. J. Pharmacol. pmid:16770320
Wagner JA et al. 2-Arachidonylglycerol acting on CB1 cannabinoid receptors mediates delayed cardioprotection induced by nitric oxide in rat isolated hearts. 2006 J. Cardiovasc. Pharmacol. pmid:16775503
Solinas M et al. Anandamide administration alone and after inhibition of fatty acid amide hydrolase (FAAH) increases dopamine levels in the nucleus accumbens shell in rats. 2006 J. Neurochem. pmid:16805835
Felder CC et al. Cannabinoids biology: the search for new therapeutic targets. 2006 Mol. Interv. pmid:16809476
Vinod KY et al. Effect of chronic ethanol exposure and its withdrawal on the endocannabinoid system. 2006 Neurochem. Int. pmid:16822589
Ghasemi M et al. Effect of anandamide on nonadrenergic noncholinergic-mediated relaxation of rat corpus cavernosum. 2006 Eur. J. Pharmacol. pmid:16824514
Bonechi C et al. Nuclear magnetic resonance for studying recognition processes between anandamide and cannabinoid receptors. 2006 Eur J Med Chem pmid:16837109
Kasai HF et al. Studies on high-energy collision-induced dissociation of endogenous cannabinoids: 2-arachidonoylglycerol and n-arachidonoylethanolamide in FAB-mass spectrometry. 2006 Anal Sci pmid:16837740
Murillo-Rodríguez E et al. Cannabidiol, a constituent of Cannabis sativa, modulates sleep in rats. 2006 FEBS Lett. pmid:16844117
Thors L and Fowler CJ Is there a temperature-dependent uptake of anandamide into cells? 2006 Br. J. Pharmacol. pmid:16865094
Schuel H Tuning the oviduct to the anandamide tone. 2006 J. Clin. Invest. pmid:16886056
Wang H et al. Fatty acid amide hydrolase deficiency limits early pregnancy events. 2006 J. Clin. Invest. pmid:16886060
Wiles AL et al. N-Arachidonyl-glycine inhibits the glycine transporter, GLYT2a. 2006 J. Neurochem. pmid:16899062
De Lago E et al. Acyl-based anandamide uptake inhibitors cause rapid toxicity to C6 glioma cells at pharmacologically relevant concentrations. 2006 J. Neurochem. pmid:16899063
Nilsson O et al. The cannabinoid agonist WIN 55,212-2 inhibits TNF-alpha-induced neutrophil transmigration across ECV304 cells. 2006 Eur. J. Pharmacol. pmid:16928371
Liu J et al. A biosynthetic pathway for anandamide. 2006 Proc. Natl. Acad. Sci. U.S.A. pmid:16938887
Prestifilippo JP et al. Inhibition of salivary secretion by activation of cannabinoid receptors. 2006 Exp. Biol. Med. (Maywood) pmid:16946411
Spoto B et al. Human adipose tissue binds and metabolizes the endocannabinoids anandamide and 2-arachidonoylglycerol. 2006 Biochimie pmid:16949718
Vlachou S et al. Effects of endocannabinoid neurotransmission modulators on brain stimulation reward. 2006 Psychopharmacology (Berl.) pmid:16953388
Szabo B et al. Depolarization-induced retrograde synaptic inhibition in the mouse cerebellar cortex is mediated by 2-arachidonoylglycerol. 2006 J. Physiol. (Lond.) pmid:16973696
Wiley JL et al. Evaluation of the role of the arachidonic acid cascade in anandamide's in vivo effects in mice. 2006 Life Sci. pmid:16978656
Mulder AM and Cravatt BF Endocannabinoid metabolism in the absence of fatty acid amide hydrolase (FAAH): discovery of phosphorylcholine derivatives of N-acyl ethanolamines. 2006 Biochemistry pmid:16981687
Hong Z et al. Role of store-operated calcium channels and calcium sensitization in normoxic contraction of the ductus arteriosus. 2006 Circulation pmid:16982938
Kreutz S et al. Cannabinoids and neuronal damage: differential effects of THC, AEA and 2-AG on activated microglial cells and degenerating neurons in excitotoxically lesioned rat organotypic hippocampal slice cultures. 2007 Exp. Neurol. pmid:17010339
Matias I et al. Changes in endocannabinoid and palmitoylethanolamide levels in eye tissues of patients with diabetic retinopathy and age-related macular degeneration. 2006 Prostaglandins Leukot. Essent. Fatty Acids pmid:17011761
Wei BQ et al. A second fatty acid amide hydrolase with variable distribution among placental mammals. 2006 J. Biol. Chem. pmid:17015445
Bari M et al. Effect of lipid rafts on Cb2 receptor signaling and 2-arachidonoyl-glycerol metabolism in human immune cells. 2006 J. Immunol. pmid:17015679
Akerman S et al. Cannabinoid (CB1) receptor activation inhibits trigeminovascular neurons. 2007 J. Pharmacol. Exp. Ther. pmid:17018694
Shimozawa N et al. Estrogen and isoflavone attenuate stress-induced gastric mucosal injury by inhibiting decreases in gastric tissue levels of CGRP in ovariectomized rats. 2007 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:17023553
Tan B et al. Targeted lipidomics: discovery of new fatty acyl amides. 2006 AAPS J pmid:17025263
Guindon J et al. Synergistic antinociceptive effects of anandamide, an endocannabinoid, and nonsteroidal anti-inflammatory drugs in peripheral tissue: a role for endogenous fatty-acid ethanolamides? 2006 Eur. J. Pharmacol. pmid:17027744
Matta JA et al. TRPV1 is a novel target for omega-3 polyunsaturated fatty acids. 2007 J. Physiol. (Lond.) pmid:17038422
Moezi L et al. Anandamide mediates hyperdynamic circulation in cirrhotic rats via CB(1) and VR(1) receptors. 2006 Br. J. Pharmacol. pmid:17043671
Varvel SA et al. Inhibition of fatty-acid amide hydrolase accelerates acquisition and extinction rates in a spatial memory task. 2007 Neuropsychopharmacology pmid:17047668
Li J and Wang DH Differential mechanisms mediating depressor and diuretic effects of anandamide. 2006 J. Hypertens. pmid:17053550
Laezza C et al. Anandamide inhibits Cdk2 and activates Chk1 leading to cell cycle arrest in human breast cancer cells. 2006 FEBS Lett. pmid:17055492
Lynch DL and Reggio PH Cannabinoid CB1 receptor recognition of endocannabinoids via the lipid bilayer: molecular dynamics simulations of CB1 transmembrane helix 6 and anandamide in a phospholipid bilayer. 2006 Jul-Aug J. Comput. Aided Mol. Des. pmid:17106765
Fowler CJ The cannabinoid system and its pharmacological manipulation--a review, with emphasis upon the uptake and hydrolysis of anandamide. 2006 Fundam Clin Pharmacol pmid:17109648
Rossi G et al. Follicle-stimulating hormone activates fatty acid amide hydrolase by protein kinase A and aromatase-dependent pathways in mouse primary Sertoli cells. 2007 Endocrinology pmid:17110429
Cross-Mellor SK et al. Effects of the FAAH inhibitor, URB597, and anandamide on lithium-induced taste reactivity responses: a measure of nausea in the rat. 2007 Psychopharmacology (Berl.) pmid:17111174
Ronco AM et al. Anandamide inhibits endothelin-1 production by human cultured endothelial cells: a new vascular action of this endocannabinoid. 2007 Pharmacology pmid:17114903