Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Stomach Ulcer D013276 75 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Breast Neoplasms D001943 24 associated lipids
Neoplasms D009369 13 associated lipids
Pain D010146 64 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Retinopathy D003930 39 associated lipids
Fatty Liver D005234 48 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Hypotension D007022 41 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Melanoma D008545 69 associated lipids
Weight Gain D015430 101 associated lipids
Hyperemia D006940 25 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Glioma D005910 112 associated lipids
Obesity D009765 29 associated lipids
Bradycardia D001919 13 associated lipids
Urinary Bladder Diseases D001745 4 associated lipids
Alzheimer Disease D000544 76 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Neuroblastoma D009447 66 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Peripheral Nervous System Diseases D010523 33 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Multiple Sclerosis D009103 13 associated lipids
Nervous System Diseases D009422 37 associated lipids
Ataxia D001259 20 associated lipids
Brain Edema D001929 20 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Brain Ischemia D002545 89 associated lipids
Epilepsy D004827 35 associated lipids
Seizures D012640 87 associated lipids
Nerve Degeneration D009410 53 associated lipids
Peptic Ulcer D010437 19 associated lipids
Hypertension D006973 115 associated lipids
Ischemic Attack, Transient D002546 42 associated lipids
Substance-Related Disorders D019966 2 associated lipids
Hepatitis D006505 11 associated lipids
Hyperalgesia D006930 42 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Brain Damage, Chronic D001925 6 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Grainger J and Boachie-Ansah G Anandamide-induced relaxation of sheep coronary arteries: the role of the vascular endothelium, arachidonic acid metabolites and potassium channels. 2001 Br. J. Pharmacol. pmid:11682448
Ross RA et al. Structure-activity relationship for the endogenous cannabinoid, anandamide, and certain of its analogues at vanilloid receptors in transfected cells and vas deferens. 2001 Br. J. Pharmacol. pmid:11159715
Vanheel B and Van de Voorde J Regional differences in anandamide- and methanandamide-induced membrane potential changes in rat mesenteric arteries. 2001 J. Pharmacol. Exp. Ther. pmid:11160613
Farquhar-Smith WP and Rice AS Administration of endocannabinoids prevents a referred hyperalgesia associated with inflammation of the urinary bladder. 2001 Anesthesiology pmid:11374613
Christopoulos A and Wilson K Interaction of anandamide with the M(1) and M(4) muscarinic acetylcholine receptors. 2001 Brain Res. pmid:11578621
White R et al. Mechanisms of anandamide-induced vasorelaxation in rat isolated coronary arteries. 2001 Br. J. Pharmacol. pmid:11606334
Tucker RC et al. The endogenous cannabinoid agonist, anandamide stimulates sensory nerves in guinea-pig airways. 2001 Br. J. Pharmacol. pmid:11226144
Wagner JA et al. Hemodynamic effects of cannabinoids: coronary and cerebral vasodilation mediated by cannabinoid CB(1) receptors. 2001 Eur. J. Pharmacol. pmid:11448486
Boger DL et al. alpha-Keto heterocycle inhibitors of fatty acid amide hydrolase: carbonyl group modification and alpha-substitution. 2001 Bioorg. Med. Chem. Lett. pmid:11412972
Mendizábal VE et al. Long-term inhibition of nitric oxide synthase potentiates effects of anandamide in the rat mesenteric bed. 2001 Eur. J. Pharmacol. pmid:11567656
Izzo AA et al. Effect of vanilloid drugs on gastrointestinal transit in mice. 2001 Br. J. Pharmacol. pmid:11264233
Baker D et al. Endocannabinoids control spasticity in a multiple sclerosis model. 2001 FASEB J. pmid:11156943
Gauldie SD et al. Anandamide activates peripheral nociceptors in normal and arthritic rat knee joints. 2001 Br. J. Pharmacol. pmid:11159713
Tognetto M et al. Anandamide excites central terminals of dorsal root ganglion neurons via vanilloid receptor-1 activation. 2001 J. Neurosci. pmid:11160380
MacCarrone M et al. Human platelets bind and degrade 2-arachidonoylglycerol, which activates these cells through a cannabinoid receptor. 2001 Eur. J. Biochem. pmid:11168423
Hansen HH et al. Accumulation of the anandamide precursor and other N-acylethanolamine phospholipids in infant rat models of in vivo necrotic and apoptotic neuronal death. 2001 J. Neurochem. pmid:11145976
Matias I et al. Evidence for an endocannabinoid system in the central nervous system of the leech Hirudo medicinalis. 2001 Brain Res. Mol. Brain Res. pmid:11245916
Kurihara J et al. 2-Arachidonoylglycerol and anandamide oppositely modulate norepinephrine release from the rat heart sympathetic nerves. 2001 Jpn. J. Pharmacol. pmid:11676206
Cravatt BF et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. 2001 Proc. Natl. Acad. Sci. U.S.A. pmid:11470906
Senior K Endogenously produced cannabinoids and liver cirrhosis. 2001 Lancet pmid:11454385
Stanford SJ et al. Identification of two distinct vasodilator pathways activated by ATP in the mesenteric bed of the rat. 2001 Br. J. Pharmacol. pmid:11454655
Mang CF et al. Differential effects of anandamide on acetylcholine release in the guinea-pig ileum mediated via vanilloid and non-CB1 cannabinoid receptors. 2001 Br. J. Pharmacol. pmid:11522608
Bradbury J Small part of cannabis puzzle solved by animal studies. 2001 Lancet pmid:11498223
Jonsson KO et al. Effects of homologues and analogues of palmitoylethanolamide upon the inactivation of the endocannabinoid anandamide. 2001 Br. J. Pharmacol. pmid:11498512
Berger A et al. Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets. 2001 Proc. Natl. Acad. Sci. U.S.A. pmid:11353819
Craib SJ et al. A possible role of lipoxygenase in the activation of vanilloid receptors by anandamide in the guinea-pig bronchus. 2001 Br. J. Pharmacol. pmid:11522594
Hayase T et al. Protective effects of cannabinoid receptor ligands analogous to anandamide against cocaine toxicity. 2001 Nihon Arukoru Yakubutsu Igakkai Zasshi pmid:11828716
Deutsch DG et al. The cellular uptake of anandamide is coupled to its breakdown by fatty-acid amide hydrolase. 2001 J. Biol. Chem. pmid:11118429
Garcia N et al. Systemic and portal hemodynamic effects of anandamide. 2001 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:11123193
Huang SM et al. Identification of a new class of molecules, the arachidonyl amino acids, and characterization of one member that inhibits pain. 2001 J. Biol. Chem. pmid:11518719
Mechoulam R and Fride E Physiology. A hunger for cannabinoids. 2001 Nature pmid:11298428
Smart D et al. Characterisation using FLIPR of human vanilloid VR1 receptor pharmacology. 2001 Eur. J. Pharmacol. pmid:11301059
Bueb JL et al. Receptor-independent effects of natural cannabinoids in rat peritoneal mast cells in vitro. 2001 Biochim. Biophys. Acta pmid:11336796
Kim D and Thayer SA Cannabinoids inhibit the formation of new synapses between hippocampal neurons in culture. 2001 J. Neurosci. pmid:11319244
Kagota S et al. 2-Arachidonoylglycerol, a candidate of endothelium-derived hyperpolarizing factor. 2001 Eur. J. Pharmacol. pmid:11275004
Bisogno T et al. The uptake by cells of 2-arachidonoylglycerol, an endogenous agonist of cannabinoid receptors. 2001 Eur. J. Biochem. pmid:11277920
De Petrocellis L et al. The activity of anandamide at vanilloid VR1 receptors requires facilitated transport across the cell membrane and is limited by intracellular metabolism. 2001 J. Biol. Chem. pmid:11278420
Jacobsson SO and Fowler CJ Characterization of palmitoylethanolamide transport in mouse Neuro-2a neuroblastoma and rat RBL-2H3 basophilic leukaemia cells: comparison with anandamide. 2001 Br. J. Pharmacol. pmid:11309246
Quistad GB et al. Fatty acid amide hydrolase inhibition by neurotoxic organophosphorus pesticides. 2001 Toxicol. Appl. Pharmacol. pmid:11350214
Day TA et al. Role of fatty acid amide hydrolase in the transport of the endogenous cannabinoid anandamide. 2001 Mol. Pharmacol. pmid:11353795
Kobayashi Y et al. Activation by 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, of p42/44 mitogen-activated protein kinase in HL-60 cells. 2001 J. Biochem. pmid:11328586
Möhle R et al. Transendothelial migration of hematopoietic progenitor cells. Role of chemotactic factors. 2001 Ann. N. Y. Acad. Sci. pmid:11458515
Chang YH et al. Effects of cannabinoids on LPS-stimulated inflammatory mediator release from macrophages: involvement of eicosanoids. 2001 J. Cell. Biochem. pmid:11329626
Olah Z et al. Anandamide activates vanilloid receptor 1 (VR1) at acidic pH in dorsal root ganglia neurons and cells ectopically expressing VR1. 2001 J. Biol. Chem. pmid:11333266
Di Marzo V et al. Highly selective CB(1) cannabinoid receptor ligands and novel CB(1)/VR(1) vanilloid receptor "hybrid" ligands. 2001 Biochem. Biophys. Res. Commun. pmid:11181068
Di Marzo V et al. Palmitoylethanolamide inhibits the expression of fatty acid amide hydrolase and enhances the anti-proliferative effect of anandamide in human breast cancer cells. 2001 Biochem. J. pmid:11485574
Murillo-Rodríguez E et al. Anandamide-induced sleep is blocked by SR141716A, a CB1 receptor antagonist and by U73122, a phospholipase C inhibitor. 2001 Neuroreport pmid:11447321
Di Marzo V et al. Anandamide: some like it hot. 2001 Trends Pharmacol. Sci. pmid:11431028
Ueda N et al. Alkaline and acid amidases hydrolyzing anandamide and other N-acylethanolamines. 2001 World Rev Nutr Diet pmid:11935959
Hansen HS et al. When and where are N-acylethanolamine phospholipids and anandamide formed? 2001 World Rev Nutr Diet pmid:11935960