Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Stomach Ulcer D013276 75 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Breast Neoplasms D001943 24 associated lipids
Neoplasms D009369 13 associated lipids
Pain D010146 64 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Retinopathy D003930 39 associated lipids
Fatty Liver D005234 48 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Hypotension D007022 41 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Melanoma D008545 69 associated lipids
Weight Gain D015430 101 associated lipids
Hyperemia D006940 25 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Glioma D005910 112 associated lipids
Obesity D009765 29 associated lipids
Bradycardia D001919 13 associated lipids
Urinary Bladder Diseases D001745 4 associated lipids
Alzheimer Disease D000544 76 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Neuroblastoma D009447 66 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Peripheral Nervous System Diseases D010523 33 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Multiple Sclerosis D009103 13 associated lipids
Nervous System Diseases D009422 37 associated lipids
Ataxia D001259 20 associated lipids
Brain Edema D001929 20 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Brain Ischemia D002545 89 associated lipids
Epilepsy D004827 35 associated lipids
Seizures D012640 87 associated lipids
Nerve Degeneration D009410 53 associated lipids
Peptic Ulcer D010437 19 associated lipids
Hypertension D006973 115 associated lipids
Ischemic Attack, Transient D002546 42 associated lipids
Substance-Related Disorders D019966 2 associated lipids
Hepatitis D006505 11 associated lipids
Hyperalgesia D006930 42 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Brain Damage, Chronic D001925 6 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Iuvone T et al. Cannabinoid CB1 receptor stimulation affords neuroprotection in MPTP-induced neurotoxicity by attenuating S100B up-regulation in vitro. 2007 J. Mol. Med. pmid:17639288
Eisenstein TK et al. Anandamide and Delta9-tetrahydrocannabinol directly inhibit cells of the immune system via CB2 receptors. 2007 J. Neuroimmunol. pmid:17640739
Pakdeechote P et al. Cannabinoids inhibit noradrenergic and purinergic sympathetic cotransmission in the rat isolated mesenteric arterial bed. 2007 Br. J. Pharmacol. pmid:17641668
Castelli MP et al. Dysregulation of the endogenous cannabinoid system in adult rats prenatally treated with the cannabinoid agonist WIN 55,212-2. 2007 Eur. J. Pharmacol. pmid:17644084
Cippitelli A et al. The anandamide transport inhibitor AM404 reduces ethanol self-administration. 2007 Eur. J. Neurosci. pmid:17650118
Romano MR and Lograno MD Evidence for the involvement of cannabinoid CB1 receptors in the bimatoprost-induced contractions on the human isolated ciliary muscle. 2007 Invest. Ophthalmol. Vis. Sci. pmid:17652738
Mulè F et al. Involvement of CB1 and CB2 receptors in the modulation of cholinergic neurotransmission in mouse gastric preparations. 2007 Pharmacol. Res. pmid:17656103
Després JP The endocannabinoid system: a new target for the regulation of energy balance and metabolism. 2007 Crit Pathw Cardiol pmid:17667864
Wise LE et al. Evaluation of fatty acid amides in the carrageenan-induced paw edema model. 2008 Neuropharmacology pmid:17675189
Thors L et al. Inhibition of the cellular uptake of anandamide by genistein and its analogue daidzein in cells with different levels of fatty acid amide hydrolase-driven uptake. 2007 Br. J. Pharmacol. pmid:17676056
Oz M et al. The endogenous cannabinoid anandamide inhibits cromakalim-activated K+ currents in follicle-enclosed Xenopus oocytes. 2007 J. Pharmacol. Exp. Ther. pmid:17682128
Gorzalka BB et al. Endocannabinoid modulation of male rat sexual behavior. 2008 Psychopharmacology (Berl.) pmid:17694389
Evans RM et al. Chronic exposure of sensory neurones to increased levels of nerve growth factor modulates CB1/TRPV1 receptor crosstalk. 2007 Br. J. Pharmacol. pmid:17700720
Wheal AJ et al. Cardiovascular effects of cannabinoids in conscious spontaneously hypertensive rats. 2007 Br. J. Pharmacol. pmid:17700721
Matias I et al. Role and regulation of acylethanolamides in energy balance: focus on adipocytes and beta-cells. 2007 Br. J. Pharmacol. pmid:17704823
Herradón E et al. Characterization of the vasorelaxant mechanisms of the endocannabinoid anandamide in rat aorta. 2007 Br. J. Pharmacol. pmid:17704831
Smid SD et al. The endocannabinoids anandamide and 2-arachidonoylglycerol inhibit cholinergic contractility in the human colon. 2007 Eur. J. Pharmacol. pmid:17706636
Moreira FA et al. Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) is mediated by CB1 receptors. 2008 Neuropharmacology pmid:17709120
Hanus LO Discovery and isolation of anandamide and other endocannabinoids. 2007 Chem. Biodivers. pmid:17712821
Okamoto Y et al. Biosynthetic pathways of the endocannabinoid anandamide. 2007 Chem. Biodivers. pmid:17712822
Yuece B et al. Cannabinoid type 1 receptor modulates intestinal propulsion by an attenuation of intestinal motor responses within the myenteric part of the peristaltic reflex. 2007 Neurogastroenterol. Motil. pmid:17727394
Cisneros JA et al. Structure-activity relationship of a series of inhibitors of monoacylglycerol hydrolysis--comparison with effects upon fatty acid amide hydrolase. 2007 J. Med. Chem. pmid:17764163
Rueda-Orozco PE et al. A potential function of endocannabinoids in the selection of a navigation strategy by rats. 2008 Psychopharmacology (Berl.) pmid:17805517
Bourne C et al. Novel, potent THC/anandamide (hybrid) analogs. 2007 Bioorg. Med. Chem. pmid:17827022
Yang YY et al. Role of Ca2+-dependent potassium channels in in vitro anandamide-mediated mesenteric vasorelaxation in rats with biliary cirrhosis. 2007 Liver Int. pmid:17845532
Ghasemi M et al. Anandamide improves the impaired nitric oxide-mediated neurogenic relaxation of the corpus cavernosum in diabetic rats: involvement of cannabinoid CB1 and vanilloid VR1 receptors. 2007 BJU Int. pmid:17850365
Ryberg E et al. The orphan receptor GPR55 is a novel cannabinoid receptor. 2007 Br. J. Pharmacol. pmid:17876302
Joshi SR Endocannabinoid system--a novel target for cardiometabolic risk. 2007 J Assoc Physicians India pmid:17879500
Mitchell VA et al. Actions of the endocannabinoid transport inhibitor AM404 in neuropathic and inflammatory pain models. 2007 Clin. Exp. Pharmacol. Physiol. pmid:17880375
Nakata M and Yada T Cannabinoids inhibit insulin secretion and cytosolic Ca2+ oscillation in islet beta-cells via CB1 receptors. 2008 Regul. Pept. pmid:17884194
Sakamoto Y et al. Clinical responses and improvement of some laboratory parameters following polymyxin B-immobilized fiber treatment in septic shock. 2007 Sep-Oct ASAIO J. pmid:17885340
Morgese MG et al. Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson's disease: role of CB(1) and TRPV1 receptors. 2007 Exp. Neurol. pmid:17900568
Hillard CJ et al. Studies of anandamide accumulation inhibitors in cerebellar granule neurons: comparison to inhibition of fatty acid amide hydrolase. 2007 J. Mol. Neurosci. pmid:17901541
Opitz CA et al. Production of the endocannabinoids anandamide and 2-arachidonoylglycerol by endothelial progenitor cells. 2007 FEBS Lett. pmid:17904123
Scherma M et al. The endogenous cannabinoid anandamide has effects on motivation and anxiety that are revealed by fatty acid amide hydrolase (FAAH) inhibition. 2008 Neuropharmacology pmid:17904589
Sun Y et al. Cannabinoid activation of PPAR alpha; a novel neuroprotective mechanism. 2007 Br. J. Pharmacol. pmid:17906680
Degenhardt BF et al. Role of osteopathic manipulative treatment in altering pain biomarkers: a pilot study. 2007 J Am Osteopath Assoc pmid:17908831
Xu H et al. Functional effects of nonsynonymous polymorphisms in the human TRPV1 gene. 2007 Am. J. Physiol. Renal Physiol. pmid:17913835
Kim SR et al. Roles of transient receptor potential vanilloid subtype 1 and cannabinoid type 1 receptors in the brain: neuroprotection versus neurotoxicity. 2007 Mol. Neurobiol. pmid:17917113
Rubino T et al. Role in anxiety behavior of the endocannabinoid system in the prefrontal cortex. 2008 Cereb. Cortex pmid:17921459
Hornig B Endothelial vasodilatory cannabinoid receptor in the human pulmonary artery: a future option in the therapy of pulmonary hypertension? 2007 J. Hypertens. pmid:17921811
Kozłowska H et al. Identification of the vasodilatory endothelial cannabinoid receptor in the human pulmonary artery. 2007 J. Hypertens. pmid:17921818
Athanasiou A et al. Cannabinoid receptor agonists are mitochondrial inhibitors: a unified hypothesis of how cannabinoids modulate mitochondrial function and induce cell death. 2007 Biochem. Biophys. Res. Commun. pmid:17931597
Astarita G et al. Identification of biosynthetic precursors for the endocannabinoid anandamide in the rat brain. 2008 J. Lipid Res. pmid:17957091
Kracke GR et al. The cannabinoid receptor agonists, anandamide and WIN 55,212-2, do not directly affect mu opioid receptors expressed in Xenopus oocytes. 2007 Naunyn Schmiedebergs Arch. Pharmacol. pmid:17960365
Correa F et al. Anandamide inhibits IL-12p40 production by acting on the promoter repressor element GA-12: possible involvement of the COX-2 metabolite prostamide E(2). 2008 Biochem. J. pmid:17961121
Bentzen PJ and Lang F Effect of anandamide on erythrocyte survival. 2007 Cell. Physiol. Biochem. pmid:17975305
Mukhopadhyay S and Tulis DA Endocannabinoid regulation of matrix metalloproteinases: implications in ischemic stroke. 2007 Cardiovasc Hematol Agents Med Chem pmid:17979695
Dainese E et al. Modulation of the endocannabinoid system by lipid rafts. 2007 Curr. Med. Chem. pmid:17979719
Muccioli GG and Stella N An optimized GC-MS method detects nanomolar amounts of anandamide in mouse brain. 2008 Anal. Biochem. pmid:17981259