Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Raichlen DA et al. Exercise-induced endocannabinoid signaling is modulated by intensity. 2013 Eur. J. Appl. Physiol. pmid:22990628
Wellner N et al. N-acylation of phosphatidylethanolamine and its biological functions in mammals. 2013 Biochim. Biophys. Acta pmid:23000428
Canseco-Alba A and Rodríguez-Manzo G Anandamide transforms noncopulating rats into sexually active animals. 2013 J Sex Med pmid:22906359
Gervasi MG et al. Anandamide levels fluctuate in the bovine oviduct during the oestrous cycle. 2013 PLoS ONE pmid:23977311
Zhang J et al. Inhibitory effects of endocannabinoid on the action potential of pacemaker cells in sinoatrial nodes of rabbits. 2013 Sheng Li Xue Bao pmid:23598867
Ruginsk SG et al. Anandamide modulates the neuroendocrine responses induced by extracellular volume expansion. 2013 Clin. Exp. Pharmacol. Physiol. pmid:23875874
Silvestri C et al. Anandamide-derived prostamide F2α negatively regulates adipogenesis. 2013 J. Biol. Chem. pmid:23801328
Pryce G et al. Control of experimental spasticity by targeting the degradation of endocannabinoids using selective fatty acid amide hydrolase inhibitors. 2013 Mult. Scler. pmid:23625705
Oh HA et al. Uncovering a role for endocannabinoid signaling in autophagy in preimplantation mouse embryos. 2013 Mol. Hum. Reprod. pmid:23112252
Zohrabi-Kalantari V et al. 4-Aminocyclopentane-1,3-diols as platforms for diversity: synthesis of anandamide analogs. 2013 Med Chem pmid:23157226
Abán C et al. Differential expression of endocannabinoid system in normal and preeclamptic placentas: effects on nitric oxide synthesis. 2013 Placenta pmid:23122699
Romero TR et al. Probable involvement of Ca(2+)-activated Cl(-) channels (CaCCs) in the activation of CB1 cannabinoid receptors. 2013 Life Sci. pmid:23123446
Andrag E and Curtis MJ Feasibility of targeting ischaemia-related ventricular arrhythmias by mimicry of endogenous protection by endocannabinoids. 2013 Br. J. Pharmacol. pmid:23713981
Fogaça MV et al. Effects of glutamate NMDA and TRPV1 receptor antagonists on the biphasic responses to anandamide injected into the dorsolateral periaqueductal grey of Wistar rats. 2013 Psychopharmacology (Berl.) pmid:23183551
De-May CL and Ali AB Cell type-specific regulation of inhibition via cannabinoid type 1 receptors in rat neocortex. 2013 J. Neurophysiol. pmid:23054605
Coppola M and Mondola R Palmitoylethanolamide: from endogenous cannabimimetic substance to innovative medicine for the treatment of cannabis dependence. 2013 Med. Hypotheses pmid:23896215
Khasabova IA et al. Increased anandamide uptake by sensory neurons contributes to hyperalgesia in a model of cancer pain. 2013 Neurobiol. Dis. pmid:23644187
Gesell FK et al. Alterations of endocannabinoids in cerebrospinal fluid of dogs with epileptic seizure disorder. 2013 BMC Vet. Res. pmid:24370333
Nicotra LL et al. Prostaglandin ethanolamides attenuate damage in a human explant colitis model. 2013 Prostaglandins Other Lipid Mediat. pmid:23380599
Fonseca BM et al. Endogenous cannabinoids revisited: a biochemistry perspective. 2013 Apr-May Prostaglandins Other Lipid Mediat. pmid:23474290
Sexton M et al. Cannabis use by individuals with multiple sclerosis: effects on specific immune parameters. 2014 Inflammopharmacology pmid:25135301
Björklund E et al. Involvement of fatty acid amide hydrolase and fatty acid binding protein 5 in the uptake of anandamide by cell lines with different levels of fatty acid amide hydrolase expression: a pharmacological study. 2014 PLoS ONE pmid:25078278
Lau BK et al. Endocannabinoid modulation by FAAH and monoacylglycerol lipase within the analgesic circuitry of the periaqueductal grey. 2014 Br. J. Pharmacol. pmid:25041240
Laprairie RB et al. Type 1 cannabinoid receptor ligands display functional selectivity in a cell culture model of striatal medium spiny projection neurons. 2014 J. Biol. Chem. pmid:25037227
Cipriano M et al. The influence of monoacylglycerol lipase inhibition upon the expression of epidermal growth factor receptor in human PC-3 prostate cancer cells. 2014 BMC Res Notes pmid:25012825
Bluett RJ et al. Central anandamide deficiency predicts stress-induced anxiety: behavioral reversal through endocannabinoid augmentation. 2014 Transl Psychiatry pmid:25004388
Dong W et al. Simulation of Swanson's literature-based discovery: anandamide treatment inhibits growth of gastric cancer cells in vitro and in silico. 2014 PLoS ONE pmid:24949851
Wiley JL et al. Endocannabinoid contribution to Δ9-tetrahydrocannabinol discrimination in rodents. 2014 Eur. J. Pharmacol. pmid:24858366
Pietrzak RH et al. Cannabinoid type 1 receptor availability in the amygdala mediates threat processing in trauma survivors. 2014 Neuropsychopharmacology pmid:24820537
Ravi J et al. FAAH inhibition enhances anandamide mediated anti-tumorigenic effects in non-small cell lung cancer by downregulating the EGF/EGFR pathway. 2014 Oncotarget pmid:24811863
Hama AT et al. Fatty acid amide hydrolase (FAAH) inhibitors exert pharmacological effects, but lack antinociceptive efficacy in rats with neuropathic spinal cord injury pain. 2014 PLoS ONE pmid:24788435
Navarria A et al. The dual blocker of FAAH/TRPV1 N-arachidonoylserotonin reverses the behavioral despair induced by stress in rats and modulates the HPA-axis. 2014 Pharmacol. Res. pmid:24861565
Al Kury LT et al. Effects of the endogenous cannabinoid anandamide on voltage-dependent sodium and calcium channels in rat ventricular myocytes. 2014 Br. J. Pharmacol. pmid:24758718
Nader J et al. Prior stimulation of the endocannabinoid system prevents methamphetamine-induced dopaminergic neurotoxicity in the striatum through activation of CB2 receptors. 2014 Neuropharmacology pmid:24709540
Kaczocha M et al. Inhibition of fatty acid binding proteins elevates brain anandamide levels and produces analgesia. 2014 PLoS ONE pmid:24705380
Abdulnour J et al. Circulating endocannabinoids in insulin sensitive vs. insulin resistant obese postmenopausal women. A MONET group study. 2014 Obesity (Silver Spring) pmid:23616305
Hoyer FF et al. Inhibition of endocannabinoid-degrading enzyme fatty acid amide hydrolase increases atherosclerotic plaque vulnerability in mice. 2014 J. Mol. Cell. Cardiol. pmid:24286707
Jergas B et al. O-2050 facilitates noradrenaline release and increases the CB1 receptor inverse agonistic effect of rimonabant in the guinea pig hippocampus. 2014 Naunyn Schmiedebergs Arch. Pharmacol. pmid:24853577
Ohno-Shosaku T and Kano M Endocannabinoid-mediated retrograde modulation of synaptic transmission. 2014 Curr. Opin. Neurobiol. pmid:24747340
Fowler CJ Has FLAT fallen flat? 2014 Trends Pharmacol. Sci. pmid:24398120
Sousa-Valente J et al. Anandamide in primary sensory neurons: too much of a good thing? 2014 Eur. J. Neurosci. pmid:24494681
Chianese R et al. Hypothalamus-pituitary axis: an obligatory target for endocannabinoids to inhibit steroidogenesis in frog testis. 2014 Gen. Comp. Endocrinol. pmid:24566122
Rea K et al. Microinjection of 2-arachidonoyl glycerol into the rat ventral hippocampus differentially modulates contextually induced fear, depending on a persistent pain state. 2014 Eur. J. Neurosci. pmid:24494683
Zheng Y et al. Dexamethasone alleviates motion sickness in rats in part by enhancing the endocannabinoid system. 2014 Eur. J. Pharmacol. pmid:24508383
Al Kury LT et al. Effects of endogenous cannabinoid anandamide on excitation-contraction coupling in rat ventricular myocytes. 2014 Cell Calcium pmid:24472666
Björklund E et al. Ketoconazole inhibits the cellular uptake of anandamide via inhibition of FAAH at pharmacologically relevant concentrations. 2014 PLoS ONE pmid:24466356
Yu S et al. Fatty acid-binding protein 5 (FABP5) regulates cognitive function both by decreasing anandamide levels and by activating the nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in the brain. 2014 J. Biol. Chem. pmid:24644281
Mahavadi S et al. Inhibitory signaling by CB1 receptors in smooth muscle mediated by GRK5/β-arrestin activation of ERK1/2 and Src kinase. 2014 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:24407588
Jackson AR et al. Characterization of endocannabinoid-mediated induction of myeloid-derived suppressor cells involving mast cells and MCP-1. 2014 J. Leukoc. Biol. pmid:24319288
Okura D et al. The endocannabinoid anandamide inhibits voltage-gated sodium channels Nav1.2, Nav1.6, Nav1.7, and Nav1.8 in Xenopus oocytes. 2014 Anesth. Analg. pmid:24557103