Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Cough D003371 19 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Retinopathy D003930 39 associated lipids
Dyskinesia, Drug-Induced D004409 15 associated lipids
Edema D004487 152 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Epilepsy D004827 35 associated lipids
Fatty Liver D005234 48 associated lipids
Fever D005334 35 associated lipids
Fibromyalgia D005356 4 associated lipids
Glioma D005910 112 associated lipids
Hepatitis D006505 11 associated lipids
Hyperalgesia D006930 42 associated lipids
Hyperemia D006940 25 associated lipids
Hyperinsulinism D006946 27 associated lipids
Hyperkinesis D006948 11 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Hypertension D006973 115 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Romano MR and Lograno MD Signaling cross-talk between cannabinoid and muscarinic systems actives Rho-kinase and increases the contractile responses of the bovine ciliary muscle. 2013 Eur. J. Pharmacol. pmid:23396229
Romero TR et al. CB1 and CB2 cannabinoid receptor agonists induce peripheral antinociception by activation of the endogenous noradrenergic system. 2013 Anesth. Analg. pmid:23302980
Ho WS Modulation by 17β-estradiol of anandamide vasorelaxation in normotensive and hypertensive rats: a role for TRPV1 but not fatty acid amide hydrolase. 2013 Eur. J. Pharmacol. pmid:23340220
Zhuang J et al. The interaction of fatty acid amide hydrolase (FAAH) inhibitors with an anandamide carrier protein using (19)F-NMR. 2013 AAPS J pmid:23344792
Avraham Y et al. Novel acylethanolamide derivatives that modulate body weight through enhancement of hypothalamic pro-opiomelanocortin (POMC) and/or decreased neuropeptide Y (NPY). 2013 J. Med. Chem. pmid:23384387
Gebeh AK et al. Elevated anandamide and related N-acylethanolamine levels occur in the peripheral blood of women with ectopic pregnancy and are mirrored by changes in peripheral fatty acid amide hydrolase activity. 2013 J. Clin. Endocrinol. Metab. pmid:23372171
Compagnucci C et al. Type-1 (CB1) cannabinoid receptor promotes neuronal differentiation and maturation of neural stem cells. 2013 PLoS ONE pmid:23372698
Starowicz K et al. Full inhibition of spinal FAAH leads to TRPV1-mediated analgesic effects in neuropathic rats and possible lipoxygenase-mediated remodeling of anandamide metabolism. 2013 PLoS ONE pmid:23573230
Subbanna S et al. Anandamide-CB1 receptor signaling contributes to postnatal ethanol-induced neonatal neurodegeneration, adult synaptic, and memory deficits. 2013 J. Neurosci. pmid:23575834
Descalzi F et al. Platelet-rich plasma exerts antinociceptive activity by a peripheral endocannabinoid-related mechanism. 2013 Tissue Eng Part A pmid:23578218
Morgan CJ et al. Cerebrospinal fluid anandamide levels, cannabis use and psychotic-like symptoms. 2013 Br J Psychiatry pmid:23580381
Blankman JL and Cravatt BF Chemical probes of endocannabinoid metabolism. 2013 Pharmacol. Rev. pmid:23512546
Seillier A et al. Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB₁ receptors: implications for schizophrenia. 2013 Neuropsychopharmacology pmid:23563893
Hawkins V and Butt A TASK-1 channels in oligodendrocytes: a role in ischemia mediated disruption. 2013 Neurobiol. Dis. pmid:23567653
Wenzel D et al. Endocannabinoid anandamide mediates hypoxic pulmonary vasoconstriction. 2013 Proc. Natl. Acad. Sci. U.S.A. pmid:24167249
Leung K et al. Role of FAAH-like anandamide transporter in anandamide inactivation. 2013 PLoS ONE pmid:24223930
Maione S et al. Piperazinyl carbamate fatty acid amide hydrolase inhibitors and transient receptor potential channel modulators as "dual-target" analgesics. 2013 Pharmacol. Res. pmid:23911581
Jourdan T et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. 2013 Nat. Med. pmid:23955712
O'Brien LD et al. Anandamide transport inhibition by ARN272 attenuates nausea-induced behaviour in rats, and vomiting in shrews (Suncus murinus). 2013 Br. J. Pharmacol. pmid:23991698
Malenczyk K et al. CB1 cannabinoid receptors couple to focal adhesion kinase to control insulin release. 2013 J. Biol. Chem. pmid:24089517