Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Weight Gain D015430 101 associated lipids
Hyperemia D006940 25 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Glioma D005910 112 associated lipids
Obesity D009765 29 associated lipids
Bradycardia D001919 13 associated lipids
Urinary Bladder Diseases D001745 4 associated lipids
Alzheimer Disease D000544 76 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Neuroblastoma D009447 66 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Peripheral Nervous System Diseases D010523 33 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Multiple Sclerosis D009103 13 associated lipids
Nervous System Diseases D009422 37 associated lipids
Ataxia D001259 20 associated lipids
Brain Edema D001929 20 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Brain Ischemia D002545 89 associated lipids
Epilepsy D004827 35 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Heyman E et al. Intense exercise increases circulating endocannabinoid and BDNF levels in humans--possible implications for reward and depression. 2012 Psychoneuroendocrinology pmid:22029953
Hill MN et al. Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. 2009 Psychoneuroendocrinology pmid:19394765
Gray JM et al. Sustained glucocorticoid exposure recruits cortico-limbic CRH signaling to modulate endocannabinoid function. 2016 Psychoneuroendocrinology pmid:26821211
Marco EM et al. Emotional, endocrine and brain anandamide response to social challenge in infant male rats. 2013 Psychoneuroendocrinology pmid:23660109
Fride E and Mechoulam R Developmental aspects of anandamide: ontogeny of response and prenatal exposure. 1996 Psychoneuroendocrinology pmid:8774060
Kaufmann I et al. Anandamide and neutrophil function in patients with fibromyalgia. 2008 Psychoneuroendocrinology pmid:18395993
Hill MN et al. Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the World Trade Center attacks. 2013 Psychoneuroendocrinology pmid:24035186
Schindler CW et al. Self-administration of the anandamide transport inhibitor AM404 by squirrel monkeys. 2016 Psychopharmacology (Berl.) pmid:26803499
Naidu PS et al. Evaluation of fatty acid amide hydrolase inhibition in murine models of emotionality. 2007 Psychopharmacology (Berl.) pmid:17279376
Panlilio LV et al. Effects of fatty acid amide hydrolase (FAAH) inhibitors on working memory in rats. 2016 Psychopharmacology (Berl.) pmid:26558620
Fernandez-Espejo E and Galan-Rodriguez B Sensorimotor gating in mice is disrupted after AM404, an anandamide reuptake and degradation inhibitor. 2004 Psychopharmacology (Berl.) pmid:15088080
Mallet PE and Beninger RJ The cannabinoid CB1 receptor antagonist SR141716A attenuates the memory impairment produced by delta9-tetrahydrocannabinol or anandamide. 1998 Psychopharmacology (Berl.) pmid:9862397
Cassano T et al. Evaluation of the emotional phenotype and serotonergic neurotransmission of fatty acid amide hydrolase-deficient mice. 2011 Psychopharmacology (Berl.) pmid:21042794
Higgs S et al. Cannabinoid influences on palatability: microstructural analysis of sucrose drinking after delta(9)-tetrahydrocannabinol, anandamide, 2-arachidonoyl glycerol and SR141716. 2003 Psychopharmacology (Berl.) pmid:12447606
Cross-Mellor SK et al. Effects of the FAAH inhibitor, URB597, and anandamide on lithium-induced taste reactivity responses: a measure of nausea in the rat. 2007 Psychopharmacology (Berl.) pmid:17111174
Morera-Herreras T et al. Nigrostriatal denervation changes the effect of cannabinoids on subthalamic neuronal activity in rats. 2011 Psychopharmacology (Berl.) pmid:20959968
Aliczki M et al. Involvement of 2-arachidonoylglycerol signaling in social challenge responding of male CD1 mice. 2015 Psychopharmacology (Berl.) pmid:25547462
Mangieri RA et al. An endocannabinoid signal associated with desire for alcohol is suppressed in recently abstinent alcoholics. 2009 Psychopharmacology (Berl.) pmid:19343330
Panlilio LV et al. Anandamide-induced behavioral disruption through a vanilloid-dependent mechanism in rats. 2009 Psychopharmacology (Berl.) pmid:19015836
Schacht JP et al. Intermediate cannabis dependence phenotypes and the FAAH C385A variant: an exploratory analysis. 2009 Psychopharmacology (Berl.) pmid:19002671