Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Weight Gain D015430 101 associated lipids
Hyperemia D006940 25 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Glioma D005910 112 associated lipids
Obesity D009765 29 associated lipids
Bradycardia D001919 13 associated lipids
Urinary Bladder Diseases D001745 4 associated lipids
Alzheimer Disease D000544 76 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Neuroblastoma D009447 66 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Peripheral Nervous System Diseases D010523 33 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Multiple Sclerosis D009103 13 associated lipids
Nervous System Diseases D009422 37 associated lipids
Ataxia D001259 20 associated lipids
Brain Edema D001929 20 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Brain Ischemia D002545 89 associated lipids
Epilepsy D004827 35 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Jarzimski C et al. Changes of blood endocannabinoids during anaesthesia: a special case for fatty acid amide hydrolase inhibition by propofol? 2012 Br J Clin Pharmacol pmid:22242687
Umathe SN et al. Endocannabinoid analogues exacerbate marble-burying behavior in mice via TRPV1 receptor. 2012 Neuropharmacology pmid:22248639
Newberry EP et al. Decreased body weight and hepatic steatosis with altered fatty acid ethanolamide metabolism in aged L-Fabp -/- mice. 2012 J. Lipid Res. pmid:22327204
Zhang X et al. Agonist-dependent potentiation of vanilloid receptor transient receptor potential vanilloid type 1 function by stilbene derivatives. 2012 Mol. Pharmacol. pmid:22328719
Rajesh M et al. Cannabinoid 1 receptor promotes cardiac dysfunction, oxidative stress, inflammation, and fibrosis in diabetic cardiomyopathy. 2012 Diabetes pmid:22315315
Shi RZ et al. Decreased anandamide transporter activity and calcitonin gene-related peptide production in spontaneously hypertensive rats: role of angiotensin II. 2012 Eur. J. Pharmacol. pmid:22318155
Battista N et al. The role of endocannabinoids in gonadal function and fertility along the evolutionary axis. 2012 Mol. Cell. Endocrinol. pmid:22305972
Gatta-Cherifi B et al. Simultaneous postprandial deregulation of the orexigenic endocannabinoid anandamide and the anorexigenic peptide YY in obesity. 2012 Int J Obes (Lond) pmid:21844878
Willibald J et al. Click-modified anandamide siRNA enables delivery and gene silencing in neuronal and immune cells. 2012 J. Am. Chem. Soc. pmid:22812910
Leweke FM Anandamide dysfunction in prodromal and established psychosis. 2012 Curr. Pharm. Des. pmid:22716147
Wang ZJ et al. Cannabinoid receptor-mediated regulation of neuronal activity and signaling in glomeruli of the main olfactory bulb. 2012 J. Neurosci. pmid:22723687
Neelamegan D et al. Identification and recombinant expression of anandamide hydrolyzing enzyme from Dictyostelium discoideum. 2012 BMC Microbiol. pmid:22730904
Moreno-Sanz G et al. Pharmacological characterization of the peripheral FAAH inhibitor URB937 in female rodents: interaction with the Abcg2 transporter in the blood-placenta barrier. 2012 Br. J. Pharmacol. pmid:22774772
Rettori E et al. Anti-inflammatory effect of the endocannabinoid anandamide in experimental periodontitis and stress in the rat. 2012 Neuroimmunomodulation pmid:22777139
Luchicchi A and Pistis M Anandamide and 2-arachidonoylglycerol: pharmacological properties, functional features, and emerging specificities of the two major endocannabinoids. 2012 Mol. Neurobiol. pmid:22801993
Lara-Celador I et al. Endocannabinoids reduce cerebral damage after hypoxic-ischemic injury in perinatal rats. 2012 Brain Res. pmid:22841538
Kaczocha M et al. Anandamide externally added to lipid vesicles containing trapped fatty acid amide hydrolase (FAAH) is readily hydrolyzed in a sterol-modulated fashion. 2012 ACS Chem Neurosci pmid:22860204
Tanveer R et al. The endocannabinoid, anandamide, augments Notch-1 signaling in cultured cortical neurons exposed to amyloid-β and in the cortex of aged rats. 2012 J. Biol. Chem. pmid:22891244
Chicca A et al. Evidence for bidirectional endocannabinoid transport across cell membranes. 2012 J. Biol. Chem. pmid:22879589
Leweke FM et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. 2012 Transl Psychiatry pmid:22832859
Whyte LS et al. Cannabinoids and bone: endocannabinoids modulate human osteoclast function in vitro. 2012 Br. J. Pharmacol. pmid:21649637
Pamplona FA and Takahashi RN Psychopharmacology of the endocannabinoids: far beyond anandamide. 2012 J. Psychopharmacol. (Oxford) pmid:21652605
Skaper SD and Di Marzo V Endocannabinoids in nervous system health and disease: the big picture in a nutshell. 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108539
Di Marzo V and De Petrocellis L Why do cannabinoid receptors have more than one endogenous ligand? 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108541
Zoerner AA et al. Simultaneous UPLC-MS/MS quantification of the endocannabinoids 2-arachidonoyl glycerol (2AG), 1-arachidonoyl glycerol (1AG), and anandamide in human plasma: minimization of matrix-effects, 2AG/1AG isomerization and degradation by toluene solvent extraction. 2012 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:21752730
Goonawardena AV et al. Pharmacological elevation of anandamide impairs short-term memory by altering the neurophysiology in the hippocampus. 2011 Oct-Nov Neuropharmacology pmid:21767554
Frazier CJ Key questions of endocannabinoid signalling in the CNS: which, where and when? 2011 J. Physiol. (Lond.) pmid:22001725
Ito T et al. Propofol protects against anandamide-induced injury in human umbilical vein endothelial cells. 2011 Kurume Med J pmid:22027193
Alenmyr L et al. TRPV1 and TRPA1 stimulation induces MUC5B secretion in the human nasal airway in vivo. 2011 Clin Physiol Funct Imaging pmid:21981454
Hayase T Differential effects of TRPV1 receptor ligands against nicotine-induced depression-like behaviors. 2011 BMC Pharmacol. pmid:21767384
Romero TR et al. The neuronal NO synthase participation in the peripheral antinociception mechanism induced by several analgesic drugs. 2011 Nitric Oxide pmid:21875681
Dean C Cannabinoid and GABA modulation of sympathetic nerve activity and blood pressure in the dorsal periaqueductal gray of the rat. 2011 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:21940402
Sridar C et al. Anandamide oxidation by wild-type and polymorphically expressed CYP2B6 and CYP2D6. 2011 Drug Metab. Dispos. pmid:21289075
Andrianova EL et al. In vitro effects of anandamide and prostamide e2 on normal and transformed nerve cells. 2011 Bull. Exp. Biol. Med. pmid:22442796
Kim HY et al. A synaptogenic amide N-docosahexaenoylethanolamide promotes hippocampal development. 2011 Prostaglandins Other Lipid Mediat. pmid:21810478
Brighton PJ et al. Characterization of the endocannabinoid system, CB(1) receptor signalling and desensitization in human myometrium. 2011 Br. J. Pharmacol. pmid:21486283
Walentiny DM et al. The endogenous cannabinoid anandamide shares discriminative stimulus effects with ∆(9)-tetrahydrocannabinol in fatty acid amide hydrolase knockout mice. 2011 Eur. J. Pharmacol. pmid:21300050
Naidoo V et al. A new generation fatty acid amide hydrolase inhibitor protects against kainate-induced excitotoxicity. 2011 J. Mol. Neurosci. pmid:21069475
Gomes FV et al. Facilitation of CB1 receptor-mediated neurotransmission decreases marble burying behavior in mice. 2011 Prog. Neuropsychopharmacol. Biol. Psychiatry pmid:21111767
Cassano T et al. Evaluation of the emotional phenotype and serotonergic neurotransmission of fatty acid amide hydrolase-deficient mice. 2011 Psychopharmacology (Berl.) pmid:21042794
Bari M et al. Characterization of the endocannabinoid system in mouse embryonic stem cells. 2011 Stem Cells Dev. pmid:20446814
Justinová Z et al. Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist. 2011 Addict Biol pmid:21054689
Long JZ et al. An anatomical and temporal portrait of physiological substrates for fatty acid amide hydrolase. 2011 J. Lipid Res. pmid:21097653
Hofmann ME et al. Cannabinoid receptor agonists potentiate action potential-independent release of GABA in the dentate gyrus through a CB1 receptor-independent mechanism. 2011 J. Physiol. (Lond.) pmid:21646412
Weller K et al. TRPV1, TRPA1, and CB1 in the isolated vagus nerve--axonal chemosensitivity and control of neuropeptide release. 2011 Neuropeptides pmid:21868092
Sarmad S et al. Depolarizing and calcium-mobilizing stimuli fail to enhance synthesis and release of endocannabinoids from rat brain cerebral cortex slices. 2011 J. Neurochem. pmid:21375532
Munguba H et al. Pre-training anandamide infusion within the basolateral amygdala impairs plus-maze discriminative avoidance task in rats. 2011 Neurobiol Learn Mem pmid:21440651
Stewart JL and McMahon LR The fatty acid amide hydrolase inhibitor URB 597: interactions with anandamide in rhesus monkeys. 2011 Br. J. Pharmacol. pmid:21449917
Aberturas MR et al. Anandamide-loaded nanoparticles: preparation and characterization. 2011 J Microencapsul pmid:21425945
Pinar-Sueiro S et al. [Cannabinoid applications in glaucoma]. 2011 Arch Soc Esp Oftalmol pmid:21414525
Mukhopadhyay B et al. Hyperactivation of anandamide synthesis and regulation of cell-cycle progression via cannabinoid type 1 (CB1) receptors in the regenerating liver. 2011 Proc. Natl. Acad. Sci. U.S.A. pmid:21383171
Rossi S et al. Cannabinoid CB1 receptors regulate neuronal TNF-α effects in experimental autoimmune encephalomyelitis. 2011 Brain Behav. Immun. pmid:21473912
Gamaleddin I et al. The selective anandamide transport inhibitor VDM11 attenuates reinstatement of nicotine seeking behaviour, but does not affect nicotine intake. 2011 Br. J. Pharmacol. pmid:21501143
Howlett AC et al. Endocannabinoid tone versus constitutive activity of cannabinoid receptors. 2011 Br. J. Pharmacol. pmid:21545414
Carr RL et al. Effect of developmental chlorpyrifos exposure, on endocannabinoid metabolizing enzymes, in the brain of juvenile rats. 2011 Toxicol. Sci. pmid:21507991
Qi J et al. Painful pathways induced by TLR stimulation of dorsal root ganglion neurons. 2011 J. Immunol. pmid:21515789
Steiner AA et al. The hypothermic response to bacterial lipopolysaccharide critically depends on brain CB1, but not CB2 or TRPV1, receptors. 2011 J. Physiol. (Lond.) pmid:21486787
Izzo AA and Deutsch DG Unique pathway for anandamide synthesis and liver regeneration. 2011 Proc. Natl. Acad. Sci. U.S.A. pmid:21490298
Chiba T et al. A synthetic cannabinoid, CP55940, inhibits lipopolysaccharide-induced cytokine mRNA expression in a cannabinoid receptor-independent mechanism in rat cerebellar granule cells. 2011 J. Pharm. Pharmacol. pmid:21492165
Huang L et al. Anandamide exerts its antiproliferative actions on cholangiocarcinoma by activation of the GPR55 receptor. 2011 Lab. Invest. pmid:21464819
Dean C Endocannabinoid modulation of sympathetic and cardiovascular responses to acute stress in the periaqueductal gray of the rat. 2011 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:21228344
Morera-Herreras T et al. Nigrostriatal denervation changes the effect of cannabinoids on subthalamic neuronal activity in rats. 2011 Psychopharmacology (Berl.) pmid:20959968
Hollis JH et al. The endocannabinoid arachidonylethanolamide attenuates aspects of lipopolysaccharide-induced changes in energy intake, energy expenditure and hypothalamic Fos expression. 2011 J. Neuroimmunol. pmid:21262543
Zschenderlein C et al. Capsaicin-induced changes in LTP in the lateral amygdala are mediated by TRPV1. 2011 PLoS ONE pmid:21249195
Garami A et al. Thermoregulatory phenotype of the Trpv1 knockout mouse: thermoeffector dysbalance with hyperkinesis. 2011 J. Neurosci. pmid:21289181
De Petrocellis L et al. N-palmitoyl-vanillamide (palvanil) is a non-pungent analogue of capsaicin with stronger desensitizing capability against the TRPV1 receptor and anti-hyperalgesic activity. 2011 Pharmacol. Res. pmid:21215315
Kotsikorou E et al. Lipid bilayer molecular dynamics study of lipid-derived agonists of the putative cannabinoid receptor, GPR55. 2011 Chem. Phys. Lipids pmid:21185816
Zaccagnino P et al. Anandamide inhibits oxidative phosphorylation in isolated liver mitochondria. 2011 FEBS Lett. pmid:21187088
Di Marzo V Endocannabinoid signaling in the brain: biosynthetic mechanisms in the limelight. 2011 Nat. Neurosci. pmid:21187849
Bari M et al. The manifold actions of endocannabinoids on female and male reproductive events. 2011 Front Biosci (Landmark Ed) pmid:21196184
Guindon J et al. Peripheral antinociceptive effects of inhibitors of monoacylglycerol lipase in a rat model of inflammatory pain. 2011 Br. J. Pharmacol. pmid:21198549
Liao YS et al. [Anandamide inhibits the growth of colorectal cancer cells through CB1 and lipid rafts]. 2011 Zhonghua Zhong Liu Za Zhi pmid:21575494
Shekhar C Mixed signals: cannabinoid system offers new therapeutic possibilities as well as challenges. 2011 Chem. Biol. pmid:21609833
Umathe SN et al. Involvement of endocannabinoids in antidepressant and anti-compulsive effect of fluoxetine in mice. 2011 Behav. Brain Res. pmid:21549765
Arias-Carrión O et al. Biochemical modulation of the sleep-wake cycle: endogenous sleep-inducing factors. 2011 J. Neurosci. Res. pmid:21557294
Sordelli MS et al. The effect of anandamide on uterine nitric oxide synthase activity depends on the presence of the blastocyst. 2011 PLoS ONE pmid:21559512
Engel MA et al. Inhibitory CB1 and activating/desensitizing TRPV1-mediated cannabinoid actions on CGRP release in rodent skin. 2011 Neuropeptides pmid:21514666
Hutchins HL et al. Eicosapentaenoic acid decreases expression of anandamide synthesis enzyme and cannabinoid receptor 2 in osteoblast-like cells. 2011 J. Nutr. Biochem. pmid:20951563
Gervasi MG et al. Anandamide capacitates bull spermatozoa through CB1 and TRPV1 activation. 2011 PLoS ONE pmid:21347292
Quercioli A et al. Elevated endocannabinoid plasma levels are associated with coronary circulatory dysfunction in obesity. 2011 Eur. Heart J. pmid:21303779
Correa F et al. The endocannabinoid anandamide downregulates IL-23 and IL-12 subunits in a viral model of multiple sclerosis: evidence for a cross-talk between IL-12p70/IL-23 axis and IL-10 in microglial cells. 2011 Brain Behav. Immun. pmid:21310228
Latek D et al. Modeling of ligand binding to G protein coupled receptors: cannabinoid CB1, CB2 and adrenergic β 2 AR. 2011 J Mol Model pmid:21365223
Signorello MG et al. The anandamide effect on NO/cGMP pathway in human platelets. 2011 J. Cell. Biochem. pmid:21328466
Greco R et al. Effects of anandamide in migraine: data from an animal model. 2011 J Headache Pain pmid:21331757
Cippitelli A et al. Endocannabinoid regulation of acute and protracted nicotine withdrawal: effect of FAAH inhibition. 2011 PLoS ONE pmid:22140525
Taylor AH et al. Modulation of the endocannabinoid system in viable and non-viable first trimester pregnancies by pregnancy-related hormones. 2011 Reprod. Biol. Endocrinol. pmid:22126420
Brizzi A et al. Resorcinol-sn-glycerol derivatives: novel 2-arachidonoylglycerol mimetics endowed with high affinity and selectivity for cannabinoid type 1 receptor. 2011 J. Med. Chem. pmid:22044209
Hamtiaux L et al. Increasing antiproliferative properties of endocannabinoids in N1E-115 neuroblastoma cells through inhibition of their metabolism. 2011 PLoS ONE pmid:22046372
Lin QS et al. Hippocampal endocannabinoids play an important role in induction of long-term potentiation and regulation of contextual fear memory formation. 2011 Brain Res. Bull. pmid:21801815
Tsuboi K et al. Enzymatic formation of N-acylethanolamines from N-acylethanolamine plasmalogen through N-acylphosphatidylethanolamine-hydrolyzing phospholipase D-dependent and -independent pathways. 2011 Biochim. Biophys. Acta pmid:21801852
Yoshino H et al. Postsynaptic diacylglycerol lipase mediates retrograde endocannabinoid suppression of inhibition in mouse prefrontal cortex. 2011 J. Physiol. (Lond.) pmid:21807615
Theile JW and Cummins TR Inhibition of Navβ4 peptide-mediated resurgent sodium currents in Nav1.7 channels by carbamazepine, riluzole, and anandamide. 2011 Mol. Pharmacol. pmid:21788423
Ndong C et al. Cloning and pharmacological characterization of the dog cannabinoid CBâ‚‚receptor. 2011 Eur. J. Pharmacol. pmid:21871882
Altinsoy A et al. A cannabinoid ligand, anandamide, exacerbates endotoxin-induced uveitis in rabbits. 2011 J Ocul Pharmacol Ther pmid:21848425
Mestre L et al. Anandamide inhibits Theiler's virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB(1) receptors. 2011 J Neuroinflammation pmid:21851608
Feledziak M et al. SAR and LC/MS studies of β-lactamic inhibitors of human fatty acid amide hydrolase (hFAAH): evidence of a nonhydrolytic process. 2011 J. Med. Chem. pmid:21899370
Palermo G et al. Covalent inhibitors of fatty acid amide hydrolase: a rationale for the activity of piperidine and piperazine aryl ureas. 2011 J. Med. Chem. pmid:21830831
Zoerner AA et al. Allergen challenge increases anandamide in bronchoalveolar fluid of patients with allergic asthma. 2011 Clin. Pharmacol. Ther. pmid:21716266
Brailoiu GC et al. Intracellular cannabinoid type 1 (CB1) receptors are activated by anandamide. 2011 J. Biol. Chem. pmid:21719698
Catanzaro G et al. Effect of capacitation on the endocannabinoid system of mouse sperm. 2011 Mol. Cell. Endocrinol. pmid:21723369