Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Migraine Disorders D008881 11 associated lipids
Morphine Dependence D009021 9 associated lipids
Multiple Sclerosis D009103 13 associated lipids
Muscle Spasticity D009128 5 associated lipids
Mycoses D009181 18 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Neoplasms D009369 13 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Nerve Degeneration D009410 53 associated lipids
Nervous System Diseases D009422 37 associated lipids
Neuralgia D009437 28 associated lipids
Neuroblastoma D009447 66 associated lipids
Obesity D009765 29 associated lipids
Pain D010146 64 associated lipids
Parkinson Disease, Secondary D010302 17 associated lipids
Peptic Ulcer D010437 19 associated lipids
Peripheral Nervous System Diseases D010523 33 associated lipids
Picornaviridae Infections D010850 4 associated lipids
Pregnancy, Ectopic D011271 5 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Schistosomiasis japonica D012554 3 associated lipids
Seizures D012640 87 associated lipids
Shock, Septic D012772 11 associated lipids
Sleep Deprivation D012892 5 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Stomach Ulcer D013276 75 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Urinary Incontinence D014549 4 associated lipids
Ventricular Fibrillation D014693 16 associated lipids
Reperfusion Injury D015427 65 associated lipids
Weight Gain D015430 101 associated lipids
Ocular Hypotension D015814 2 associated lipids
Alveolar Bone Loss D016301 10 associated lipids
Cardiovirus Infections D018188 3 associated lipids
Cholangiocarcinoma D018281 7 associated lipids
Ventricular Dysfunction, Left D018487 33 associated lipids
Impotence, Vasculogenic D018783 4 associated lipids
Pancreatitis, Acute Necrotizing D019283 18 associated lipids
Endotoxemia D019446 27 associated lipids
Neurodegenerative Diseases D019636 32 associated lipids
Substance-Related Disorders D019966 2 associated lipids
Sleep Apnea, Obstructive D020181 9 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Amnesia, Anterograde D020324 2 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Sciatic Neuropathy D020426 13 associated lipids
Parkinsonian Disorders D020734 20 associated lipids
Somatosensory Disorders D020886 1 associated lipids
Sleep Disorders, Intrinsic D020919 1 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Nicholson J et al. Leptin levels are negatively correlated with 2-arachidonoylglycerol in the cerebrospinal fluid of patients with osteoarthritis. 2015 PLoS ONE pmid:25835291
Patsenker E et al. Elevated levels of endocannabinoids in chronic hepatitis C may modulate cellular immune response and hepatic stellate cell activation. 2015 Int J Mol Sci pmid:25826533
Aliczki M et al. Involvement of 2-arachidonoylglycerol signaling in social challenge responding of male CD1 mice. 2015 Psychopharmacology (Berl.) pmid:25547462
Urquhart P et al. Endocannabinoids and their oxygenation by cyclo-oxygenases, lipoxygenases and other oxygenases. 2015 Biochim. Biophys. Acta pmid:25543004
Almada M et al. Anandamide and decidual remodelling: COX-2 oxidative metabolism as a key regulator. 2015 Biochim. Biophys. Acta pmid:26335727
Rapino C et al. Endocannabinoids as biomarkers of human reproduction. 2014 Jul-Aug Hum. Reprod. Update pmid:24516083
Thieme U et al. Quantification of anandamide and 2-arachidonoylglycerol plasma levels to examine potential influences of tetrahydrocannabinol application on the endocannabinoid system in humans. 2014 Jan-Feb Drug Test Anal pmid:24424856
Battista N et al. Analytical approaches for the determination of phytocannabinoids and endocannabinoids in human matrices. 2014 Jan-Feb Drug Test Anal pmid:24218186
Dong W et al. Simulation of Swanson's literature-based discovery: anandamide treatment inhibits growth of gastric cancer cells in vitro and in silico. 2014 PLoS ONE pmid:24949851
Wiley JL et al. Endocannabinoid contribution to Δ9-tetrahydrocannabinol discrimination in rodents. 2014 Eur. J. Pharmacol. pmid:24858366
Pietrzak RH et al. Cannabinoid type 1 receptor availability in the amygdala mediates threat processing in trauma survivors. 2014 Neuropsychopharmacology pmid:24820537
Ravi J et al. FAAH inhibition enhances anandamide mediated anti-tumorigenic effects in non-small cell lung cancer by downregulating the EGF/EGFR pathway. 2014 Oncotarget pmid:24811863
Hama AT et al. Fatty acid amide hydrolase (FAAH) inhibitors exert pharmacological effects, but lack antinociceptive efficacy in rats with neuropathic spinal cord injury pain. 2014 PLoS ONE pmid:24788435
Al Kury LT et al. Effects of the endogenous cannabinoid anandamide on voltage-dependent sodium and calcium channels in rat ventricular myocytes. 2014 Br. J. Pharmacol. pmid:24758718
Ohno-Shosaku T and Kano M Endocannabinoid-mediated retrograde modulation of synaptic transmission. 2014 Curr. Opin. Neurobiol. pmid:24747340
Chianese R et al. Hypothalamus-pituitary axis: an obligatory target for endocannabinoids to inhibit steroidogenesis in frog testis. 2014 Gen. Comp. Endocrinol. pmid:24566122
Björklund E et al. Ketoconazole inhibits the cellular uptake of anandamide via inhibition of FAAH at pharmacologically relevant concentrations. 2014 PLoS ONE pmid:24466356
Yu S et al. Fatty acid-binding protein 5 (FABP5) regulates cognitive function both by decreasing anandamide levels and by activating the nuclear receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in the brain. 2014 J. Biol. Chem. pmid:24644281
Mahavadi S et al. Inhibitory signaling by CB1 receptors in smooth muscle mediated by GRK5/β-arrestin activation of ERK1/2 and Src kinase. 2014 Am. J. Physiol. Gastrointest. Liver Physiol. pmid:24407588
Jackson AR et al. Characterization of endocannabinoid-mediated induction of myeloid-derived suppressor cells involving mast cells and MCP-1. 2014 J. Leukoc. Biol. pmid:24319288