Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Hypertension, Portal D006975 12 associated lipids
Hypotension D007022 41 associated lipids
Hypothermia D007035 19 associated lipids
Inflammation D007249 119 associated lipids
Insulin Resistance D007333 99 associated lipids
Intestinal Pseudo-Obstruction D007418 5 associated lipids
Learning Disorders D007859 11 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Melanoma D008545 69 associated lipids
Memory Disorders D008569 33 associated lipids
Migraine Disorders D008881 11 associated lipids
Morphine Dependence D009021 9 associated lipids
Multiple Sclerosis D009103 13 associated lipids
Muscle Spasticity D009128 5 associated lipids
Mycoses D009181 18 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Neoplasms D009369 13 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Nerve Degeneration D009410 53 associated lipids
Nervous System Diseases D009422 37 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Vandevoorde S and Fowler CJ Inhibition of fatty acid amide hydrolase and monoacylglycerol lipase by the anandamide uptake inhibitor VDM11: evidence that VDM11 acts as an FAAH substrate. 2005 Br. J. Pharmacol. pmid:15895107
Ryberg E et al. The orphan receptor GPR55 is a novel cannabinoid receptor. 2007 Br. J. Pharmacol. pmid:17876302
Hind WH et al. Endocannabinoids modulate human blood-brain barrier permeability in vitro. 2015 Br. J. Pharmacol. pmid:25651941
Thors L and Fowler CJ Is there a temperature-dependent uptake of anandamide into cells? 2006 Br. J. Pharmacol. pmid:16865094
Van den Bossche I and Vanheel B Influence of cannabinoids on the delayed rectifier in freshly dissociated smooth muscle cells of the rat aorta. 2000 Br. J. Pharmacol. pmid:10960073
Romano MR and Lograno MD Cannabinoid agonists induce relaxation in the bovine ophthalmic artery: evidences for CB1 receptors, nitric oxide and potassium channels. 2006 Br. J. Pharmacol. pmid:16474412
Ho WS and Randall MD Endothelium-dependent metabolism by endocannabinoid hydrolases and cyclooxygenases limits vasorelaxation to anandamide and 2-arachidonoylglycerol. 2007 Br. J. Pharmacol. pmid:17245358
Makwana R et al. Pharmacological characterization of cannabinoid receptor activity in the rat-isolated ileum myenteric plexus-longitudinal muscle preparation. 2010 Br. J. Pharmacol. pmid:20233228
Randall MD The cardiovascular actions of anandamide: more targets? 2005 Br. J. Pharmacol. pmid:15834438
Kwolek G et al. Central and peripheral components of the pressor effect of anandamide in urethane-anaesthetized rats. 2005 Br. J. Pharmacol. pmid:15834445
White R and Hiley CR A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery. 1997 Br. J. Pharmacol. pmid:9422801
Lever IJ and Malcangio M CB(1) receptor antagonist SR141716A increases capsaicin-evoked release of Substance P from the adult mouse spinal cord. 2002 Br. J. Pharmacol. pmid:11786475
Moezi L et al. Anandamide mediates hyperdynamic circulation in cirrhotic rats via CB(1) and VR(1) receptors. 2006 Br. J. Pharmacol. pmid:17043671
Steffens M et al. Cannabinoid CB1 receptor-mediated modulation of evoked dopamine release and of adenylyl cyclase activity in the human neocortex. 2004 Br. J. Pharmacol. pmid:14993102
Izzo AA et al. Peripheral endocannabinoid dysregulation in obesity: relation to intestinal motility and energy processing induced by food deprivation and re-feeding. 2009 Br. J. Pharmacol. pmid:19371345
Ho WS et al. 'Entourage' effects of N-palmitoylethanolamide and N-oleoylethanolamide on vasorelaxation to anandamide occur through TRPV1 receptors. 2008 Br. J. Pharmacol. pmid:18695637
Kagaya M et al. Characterization of the anandamide induced depolarization of guinea-pig isolated vagus nerve. 2002 Br. J. Pharmacol. pmid:12183329
Pei R et al. Low-fat yogurt consumption reduces biomarkers of chronic inflammation and inhibits markers of endotoxin exposure in healthy premenopausal women: a randomised controlled trial. 2017 Br. J. Nutr. pmid:29179781
Morgan CJ et al. Cerebrospinal fluid anandamide levels, cannabis use and psychotic-like symptoms. 2013 Br J Psychiatry pmid:23580381
Koethe D et al. Anandamide elevation in cerebrospinal fluid in initial prodromal states of psychosis. 2009 Br J Psychiatry pmid:19336792
Jarzimski C et al. Changes of blood endocannabinoids during anaesthesia: a special case for fatty acid amide hydrolase inhibition by propofol? 2012 Br J Clin Pharmacol pmid:22242687
Lam PM et al. Characterization and comparison of recombinant human and rat TRPV1 receptors: effects of exo- and endocannabinoids. 2005 Br J Anaesth pmid:15722382
Davies JW et al. Pharmacology of capsaicin-, anandamide-, and N-arachidonoyl-dopamine-evoked cell death in a homogeneous transient receptor potential vanilloid subtype 1 receptor population. 2010 Br J Anaesth pmid:20354008
Weis F et al. Effect of anaesthesia and cardiopulmonary bypass on blood endocannabinoid concentrations during cardiac surgery. 2010 Br J Anaesth pmid:20525978
Jerman JC et al. Comparison of effects of anandamide at recombinant and endogenous rat vanilloid receptors. 2002 Br J Anaesth pmid:12453933
Rossi F et al. The endovanilloid/endocannabinoid system in human osteoclasts: possible involvement in bone formation and resorption. 2009 Bone pmid:19059369
Gesell FK et al. Alterations of endocannabinoids in cerebrospinal fluid of dogs with epileptic seizure disorder. 2013 BMC Vet. Res. pmid:24370333
Kumar S Computational identification and binding analysis of orphan human cytochrome P450 4X1 enzyme with substrates. 2015 BMC Res Notes pmid:25595103
Cipriano M et al. The influence of monoacylglycerol lipase inhibition upon the expression of epidermal growth factor receptor in human PC-3 prostate cancer cells. 2014 BMC Res Notes pmid:25012825
Hayase T Differential effects of TRPV1 receptor ligands against nicotine-induced depression-like behaviors. 2011 BMC Pharmacol. pmid:21767384
Neelamegan D et al. Identification and recombinant expression of anandamide hydrolyzing enzyme from Dictyostelium discoideum. 2012 BMC Microbiol. pmid:22730904
Bradshaw HB et al. The endocannabinoid anandamide is a precursor for the signaling lipid N-arachidonoyl glycine by two distinct pathways. 2009 BMC Biochem. pmid:19460156
Maccarrone M et al. Estrogen stimulates arachidonoylethanolamide release from human endothelial cells and platelet activation. 2002 Blood pmid:12393387
Valk P et al. Anandamide, a natural ligand for the peripheral cannabinoid receptor is a novel synergistic growth factor for hematopoietic cells. 1997 Blood pmid:9269762
Ghasemi M et al. Anandamide improves the impaired nitric oxide-mediated neurogenic relaxation of the corpus cavernosum in diabetic rats: involvement of cannabinoid CB1 and vanilloid VR1 receptors. 2007 BJU Int. pmid:17850365
Nallendran V et al. The plasma levels of the endocannabinoid, anandamide, increase with the induction of labour. 2010 BJOG pmid:20406230
Psychoyos D et al. Cannabinoid receptor 1 signaling in embryo neurodevelopment. 2012 Birth Defects Res. B Dev. Reprod. Toxicol. pmid:22311661
Morefield SI et al. Drug evaluations using neuronal networks cultured on microelectrode arrays. 2000 Biosens Bioelectron pmid:11219752
Boger DL et al. alpha-Keto heterocycle inhibitors of fatty acid amide hydrolase: carbonyl group modification and alpha-substitution. 2001 Bioorg. Med. Chem. Lett. pmid:11412972
Sit SY et al. Novel inhibitors of fatty acid amide hydrolase. 2007 Bioorg. Med. Chem. Lett. pmid:17459705
El Fangour S et al. Hemisynthesis and preliminary evaluation of novel endocannabinoid analogues. 2003 Bioorg. Med. Chem. Lett. pmid:12781177
Parkkari T et al. Synthesis and CB1 receptor activities of novel arachidonyl alcohol derivatives. 2004 Bioorg. Med. Chem. Lett. pmid:15149681
Segall Y et al. Arachidonylsulfonyl derivatives as cannabinoid CB1 receptor and fatty acid amide hydrolase inhibitors. 2003 Bioorg. Med. Chem. Lett. pmid:12951114
Ortar G et al. New tetrazole-based selective anandamide uptake inhibitors. 2008 Bioorg. Med. Chem. Lett. pmid:18424134
Balas L et al. Synthesis of a potential photoactivatable anandamide analog. 2006 Bioorg. Med. Chem. Lett. pmid:16682198
Yao F et al. Development of novel tail-modified anandamide analogs. 2008 Bioorg. Med. Chem. Lett. pmid:18723350
Urbani P et al. New metabolically stable fatty acid amide ligands of cannabinoid receptors: Synthesis and receptor affinity studies. 2006 Bioorg. Med. Chem. Lett. pmid:16213718
Aneetha H et al. Alcohol dehydrogenase-catalyzed in vitro oxidation of anandamide to N-arachidonoyl glycine, a lipid mediator: synthesis of N-acyl glycinals. 2009 Bioorg. Med. Chem. Lett. pmid:19013794
Brizzi A et al. Design, synthesis, binding, and molecular modeling studies of new potent ligands of cannabinoid receptors. 2007 Bioorg. Med. Chem. pmid:17561406
Duarte CD et al. Synthesis, pharmacological evaluation and electrochemical studies of novel 6-nitro-3,4-methylenedioxyphenyl-N-acylhydrazone derivatives: Discovery of LASSBio-881, a new ligand of cannabinoid receptors. 2007 Bioorg. Med. Chem. pmid:17275312
Di Marzo V et al. The anandamide membrane transporter. Structure-activity relationships of anandamide and oleoylethanolamine analogs with phenyl rings in the polar head group region. 2004 Bioorg. Med. Chem. pmid:15351399
Vandevoorde S et al. N-Morpholino- and N-diethyl-analogues of palmitoylethanolamide increase the sensitivity of transfected human vanilloid receptors to activation by anandamide without affecting fatty acid amidohydrolase activity. 2003 Bioorg. Med. Chem. pmid:12614867
Osman NA et al. Synthesis, binding studies and molecular modeling of novel cannabinoid receptor ligands. 2010 Bioorg. Med. Chem. pmid:21074998
Bourne C et al. Novel, potent THC/anandamide (hybrid) analogs. 2007 Bioorg. Med. Chem. pmid:17827022
Parkkari T et al. Synthesis, cannabinoid receptor activity, and enzymatic stability of reversed amide derivatives of arachidonoyl ethanolamide. 2006 Bioorg. Med. Chem. pmid:16644227
Kono M et al. Design, synthesis, and biological evaluation of a series of piperazine ureas as fatty acid amide hydrolase inhibitors. 2014 Bioorg. Med. Chem. pmid:24440478
Ferreri C et al. Synthesis of all-trans anandamide: a substrate for fatty acid amide hydrolase with dual effects on rabbit platelet activation. 2008 Bioorg. Med. Chem. pmid:18782671
Wyffels L et al. Radiosynthesis, in vitro and in vivo evaluation of 123I-labeled anandamide analogues for mapping brain FAAH. 2009 Bioorg. Med. Chem. pmid:19054678
Koga D et al. High-performance liquid chromatography and fluorometric detection of arachidonylethanolamide (anandamide) and its analogues, derivatized with 4-(N-chloroformylmethyl-N-methyl)amino-7-N,N-dimethylaminosulp honyl-2,1 ,3- benzoxadiazole (DBD-COCl). 1995 Jan-Feb Biomed. Chromatogr. pmid:7734936
Schmidt A et al. Determination of the endocannabinoid anandamide in human plasma by high-performance liquid chromatography. 2006 Biomed. Chromatogr. pmid:16189813
Arai Y et al. Sensitive determination of anandamide in rat brain utilizing a coupled-column HPLC with fluorimetric detection. 2000 Biomed. Chromatogr. pmid:10694706
Wang X et al. Circulating Endocannabinoids and Insulin Resistance in Patients with Obstructive Sleep Apnea. 2016 Biomed Res Int pmid:26904688
Spaziano G et al. Exposure to Allergen Causes Changes in NTS Neural Activities after Intratracheal Capsaicin Application, in Endocannabinoid Levels and in the Glia Morphology of NTS. 2015 Biomed Res Int pmid:25866824
Malek N et al. Alterations in the anandamide metabolism in the development of neuropathic pain. 2014 Biomed Res Int pmid:25276812
Paria BC et al. Fatty-acid amide hydrolase is expressed in the mouse uterus and embryo during the periimplantation period. 1999 Biol. Reprod. pmid:10208977
Wang J et al. Stage-specific excitation of cannabinoid receptor exhibits differential effects on mouse embryonic development. 1999 Biol. Reprod. pmid:10084956
Cobellis G et al. Endocannabinoid system in frog and rodent testis: type-1 cannabinoid receptor and fatty acid amide hydrolase activity in male germ cells. 2006 Biol. Reprod. pmid:16611862
Yang ZM et al. Activation of brain-type cannabinoid receptors interferes with preimplantation mouse embryo development. 1996 Biol. Reprod. pmid:8879486
Sun X et al. Genetic loss of Faah compromises male fertility in mice. 2009 Biol. Reprod. pmid:18987328
Paria BC et al. Effects of cannabinoids on preimplantation mouse embryo development and implantation are mediated by brain-type cannabinoid receptors. 1998 Biol. Reprod. pmid:9623610
Schuel H and Burkman LJ A tale of two cells: endocannabinoid-signaling regulates functions of neurons and sperm. 2005 Biol. Reprod. pmid:16120829
Demers CH et al. Interactions Between Anandamide and Corticotropin-Releasing Factor Signaling Modulate Human Amygdala Function and Risk for Anxiety Disorders: An Imaging Genetics Strategy for Modeling Molecular Interactions. 2016 Biol. Psychiatry pmid:26923505
Lu HC and Mackie K An Introduction to the Endogenous Cannabinoid System. 2016 Biol. Psychiatry pmid:26698193
Saravia R et al. CB Cannabinoid Receptors Mediate Cognitive Deficits and Structural Plasticity Changes During Nicotine Withdrawal. 2017 Biol. Psychiatry pmid:27737762
Busquets-Garcia A et al. Differential role of anandamide and 2-arachidonoylglycerol in memory and anxiety-like responses. 2011 Biol. Psychiatry pmid:21684528
Tzavara ET et al. Endocannabinoids activate transient receptor potential vanilloid 1 receptors to reduce hyperdopaminergia-related hyperactivity: therapeutic implications. 2006 Biol. Psychiatry pmid:16199010
Justinova Z et al. Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates. 2008 Biol. Psychiatry pmid:18814866
Watanabe K et al. Pharmacological effects in mice of anandamide and its related fatty acid ethanolamides, and enhancement of cataleptogenic effect of anandamide by phenylmethylsulfonyl fluoride. 1999 Biol. Pharm. Bull. pmid:10328555
Shiraishi T et al. The presence of ceramidase activity in liver nuclear membrane. 2003 Biol. Pharm. Bull. pmid:12808285
Kimura T et al. Anandamide, an endogenous cannabinoid receptor ligand, also interacts with 5-hydroxytryptamine (5-HT) receptor. 1998 Biol. Pharm. Bull. pmid:9556149
Zolese G et al. Effect of acylethanolamides on lipid peroxidation and paraoxonase activity. 2008 Biofactors pmid:19478424
Grambow E et al. Differential effects of endogenous, phyto and synthetic cannabinoids on thrombogenesis and platelet activity. 2016 Biofactors pmid:27151562
Almada M et al. Anandamide interferes with human endometrial stromal-derived cell differentiation: An effect dependent on inhibition of cyclooxygenase-2 expression and prostaglandin E2 release. 2016 Biofactors pmid:26945481
Lipina C et al. New vistas for treatment of obesity and diabetes? Endocannabinoid signalling and metabolism in the modulation of energy balance. 2012 Bioessays pmid:22674489
Karava V et al. Anandamide metabolism by Tetrahymena pyriformis in vitro. Characterization and identification of a 66 kDa fatty acid amidohydrolase. 2005 Biochimie pmid:15951097
Spoto B et al. Human adipose tissue binds and metabolizes the endocannabinoids anandamide and 2-arachidonoylglycerol. 2006 Biochimie pmid:16949718
Romani R et al. Anandamide and its congeners inhibit human plasma butyrylcholinesterase. Possible new roles for these endocannabinoids? 2011 Biochimie pmid:21664223
Hillard CJ et al. Characterization of the kinetics and distribution of N-arachidonylethanolamine (anandamide) hydrolysis by rat brain. 1995 Biochim. Biophys. Acta pmid:7647100
Wellner N et al. N-acylation of phosphatidylethanolamine and its biological functions in mammals. 2013 Biochim. Biophys. Acta pmid:23000428
Vance JE and Tasseva G Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. 2013 Biochim. Biophys. Acta pmid:22960354
Jia Y and Lee LY Role of TRPV receptors in respiratory diseases. 2007 Biochim. Biophys. Acta pmid:17346945
Petersen G et al. Intestinal levels of anandamide and oleoylethanolamide in food-deprived rats are regulated through their precursors. 2006 Biochim. Biophys. Acta pmid:16478679
Katayama K et al. Equilibrium in the hydrolysis and synthesis of cannabimimetic anandamide demonstrated by a purified enzyme. 1999 Biochim. Biophys. Acta pmid:10521704
Hampson AJ et al. Anandamide hydroxylation by brain lipoxygenase:metabolite structures and potencies at the cannabinoid receptor. 1995 Biochim. Biophys. Acta pmid:7488638
Sun YX et al. Involvement of N-acylethanolamine-hydrolyzing acid amidase in the degradation of anandamide and other N-acylethanolamines in macrophages. 2005 Biochim. Biophys. Acta pmid:16154384
Bueb JL et al. Receptor-independent effects of natural cannabinoids in rat peritoneal mast cells in vitro. 2001 Biochim. Biophys. Acta pmid:11336796
Tsuboi K et al. Enzymatic formation of N-acylethanolamines from N-acylethanolamine plasmalogen through N-acylphosphatidylethanolamine-hydrolyzing phospholipase D-dependent and -independent pathways. 2011 Biochim. Biophys. Acta pmid:21801852
Bisogno T et al. Occurrence and metabolism of anandamide and related acyl-ethanolamides in ovaries of the sea urchin Paracentrotus lividus. 1997 Biochim. Biophys. Acta pmid:9150253
Hansen HS et al. Glutamate stimulates the formation of N-acylphosphatidylethanolamine and N-acylethanolamine in cortical neurons in culture. 1995 Biochim. Biophys. Acta pmid:7548201
Ueda N et al. Lipoxygenase-catalyzed oxygenation of arachidonylethanolamide, a cannabinoid receptor agonist. 1995 Biochim. Biophys. Acta pmid:7827116