Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Seizures D012640 87 associated lipids
Nerve Degeneration D009410 53 associated lipids
Peptic Ulcer D010437 19 associated lipids
Hypertension D006973 115 associated lipids
Ischemic Attack, Transient D002546 42 associated lipids
Substance-Related Disorders D019966 2 associated lipids
Hepatitis D006505 11 associated lipids
Hyperalgesia D006930 42 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Brain Damage, Chronic D001925 6 associated lipids
Ventricular Fibrillation D014693 16 associated lipids
Fever D005334 35 associated lipids
Bronchial Spasm D001986 18 associated lipids
Morphine Dependence D009021 9 associated lipids
Shock, Septic D012772 11 associated lipids
Cough D003371 19 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Catalepsy D002375 30 associated lipids
Migraine Disorders D008881 11 associated lipids
Cardiomyopathy, Dilated D002311 15 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Ferreira SG et al. N-acyldopamines control striatal input terminals via novel ligand-gated cation channels. 2009 Neuropharmacology pmid:19101577
Hillard CJ and Jarrahian A Accumulation of anandamide: evidence for cellular diversity. 2005 Neuropharmacology pmid:15910883
Umathe SN et al. Endocannabinoid analogues exacerbate marble-burying behavior in mice via TRPV1 receptor. 2012 Neuropharmacology pmid:22248639
Price TJ et al. A role for the anandamide membrane transporter in TRPV1-mediated neurosecretion from trigeminal sensory neurons. 2005 Neuropharmacology pmid:15992578
Gamber KM et al. Cannabinoids augment the release of neuropeptide Y in the rat hypothalamus. 2005 Neuropharmacology pmid:15949823
Schreiber AK et al. Peripheral antinociceptive effect of anandamide and drugs that affect the endocannabinoid system on the formalin test in normal and streptozotocin-diabetic rats. 2012 Neuropharmacology pmid:22959964
Starowicz K et al. Spinal anandamide produces analgesia in neuropathic rats: possible CB(1)- and TRPV1-mediated mechanisms. 2012 Neuropharmacology pmid:22178705
Sokal DM et al. Intraplantar injection of anandamide inhibits mechanically-evoked responses of spinal neurones via activation of CB2 receptors in anaesthetised rats. 2003 Neuropharmacology pmid:12871657
Liu J et al. Multiple pathways involved in the biosynthesis of anandamide. 2008 Neuropharmacology pmid:17631919
Guindon J and Beaulieu P Antihyperalgesic effects of local injections of anandamide, ibuprofen, rofecoxib and their combinations in a model of neuropathic pain. 2006 Neuropharmacology pmid:16442133
Nader J et al. Prior stimulation of the endocannabinoid system prevents methamphetamine-induced dopaminergic neurotoxicity in the striatum through activation of CB2 receptors. 2014 Neuropharmacology pmid:24709540
Lisboa SF and Guimarães FS Differential role of CB1 and TRPV1 receptors on anandamide modulation of defensive responses induced by nitric oxide in the dorsolateral periaqueductal gray. 2012 Neuropharmacology pmid:22394688
Moreira FA et al. Anxiolytic-like effect of cannabinoids injected into the rat dorsolateral periaqueductal gray. 2007 Neuropharmacology pmid:17156799
Moreira FA et al. Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) is mediated by CB1 receptors. 2008 Neuropharmacology pmid:17709120
Morena M et al. Emotional arousal state influences the ability of amygdalar endocannabinoid signaling to modulate anxiety. 2016 Neuropharmacology pmid:27553121
Citraro R et al. Antiepileptic action of N-palmitoylethanolamine through CB1 and PPAR-α receptor activation in a genetic model of absence epilepsy. 2013 Neuropharmacology pmid:23206503
Wise LE et al. Evaluation of fatty acid amides in the carrageenan-induced paw edema model. 2008 Neuropharmacology pmid:17675189
Roberts LA et al. Methanandamide activation of a novel current in mouse trigeminal ganglion sensory neurons in vitro. 2008 Neuropharmacology pmid:17631916
Rubio M et al. CB1 receptor blockade reduces the anxiogenic-like response and ameliorates the neurochemical imbalances associated with alcohol withdrawal in rats. 2008 Neuropharmacology pmid:18371990
Wang W et al. Enhancement of apamin-sensitive medium afterhyperpolarization current by anandamide and its role in excitability control in cultured hippocampal neurons. 2011 Neuropharmacology pmid:21272594
Vela G et al. Anandamide decreases naloxone-precipitated withdrawal signs in mice chronically treated with morphine. 1995 Neuropharmacology pmid:7566503
Suplita RL et al. Inhibition of fatty-acid amide hydrolase enhances cannabinoid stress-induced analgesia: sites of action in the dorsolateral periaqueductal gray and rostral ventromedial medulla. 2005 Neuropharmacology pmid:16129456
Lisboa SF et al. Complex interaction between anandamide and the nitrergic system in the dorsolateral periaqueductal gray to modulate anxiety-like behavior in rats. 2013 Neuropharmacology pmid:23899460
Poling JS et al. Anandamide, an endogenous cannabinoid, inhibits Shaker-related voltage-gated K+ channels. 1996 Neuropharmacology pmid:8938728
Suplita RL et al. Endocannabinoids at the spinal level regulate, but do not mediate, nonopioid stress-induced analgesia. 2006 Neuropharmacology pmid:16316669
Desroches J et al. Endocannabinoids decrease neuropathic pain-related behavior in mice through the activation of one or both peripheral CB₁ and CB₂ receptors. 2014 Neuropharmacology pmid:24148808
Clapper JR et al. The endocannabinoid system as a target for the treatment of cannabis dependence. 2009 Neuropharmacology pmid:18691603
Wilkerson JL et al. The endocannabinoid hydrolysis inhibitor SA-57: Intrinsic antinociceptive effects, augmented morphine-induced antinociception, and attenuated heroin seeking behavior in mice. 2017 Neuropharmacology pmid:27890602
Piomelli D More surprises lying ahead. The endocannabinoids keep us guessing. 2014 Neuropharmacology pmid:23954677
Placzek EA et al. Membrane microdomains and metabolic pathways that define anandamide and 2-arachidonyl glycerol biosynthesis and breakdown. 2008 Neuropharmacology pmid:18760289
Scherma M et al. The endogenous cannabinoid anandamide has effects on motivation and anxiety that are revealed by fatty acid amide hydrolase (FAAH) inhibition. 2008 Neuropharmacology pmid:17904589
Gyires K and Zádori Z [Analysis of central mechanisms involved in gastric mucosal integrity]. 2008 Neuropsychopharmacol Hung pmid:18956615
Mahler SV et al. Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances 'liking' of a sweet reward. 2007 Neuropsychopharmacology pmid:17406653
Izumi Y and Zorumski CF NMDA receptors, mGluR5, and endocannabinoids are involved in a cascade leading to hippocampal long-term depression. 2012 Neuropsychopharmacology pmid:21993209
Gunduz-Cinar O et al. Fluoxetine Facilitates Fear Extinction Through Amygdala Endocannabinoids. 2016 Neuropsychopharmacology pmid:26514583
Monteleone P et al. Blood levels of the endocannabinoid anandamide are increased in anorexia nervosa and in binge-eating disorder, but not in bulimia nervosa. 2005 Neuropsychopharmacology pmid:15841111
Giuffrida A et al. Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. 2004 Neuropsychopharmacology pmid:15354183
Morena M et al. Neurobiological Interactions Between Stress and the Endocannabinoid System. 2016 Neuropsychopharmacology pmid:26068727
Centonze D et al. A critical interaction between dopamine D2 receptors and endocannabinoids mediates the effects of cocaine on striatal gabaergic Transmission. 2004 Neuropsychopharmacology pmid:15100701
Pietrzak RH et al. Cannabinoid type 1 receptor availability in the amygdala mediates threat processing in trauma survivors. 2014 Neuropsychopharmacology pmid:24820537
Dubreucq S et al. Genetic dissection of the role of cannabinoid type-1 receptors in the emotional consequences of repeated social stress in mice. 2012 Neuropsychopharmacology pmid:22434220
Oleson EB et al. Cannabinoid receptor activation shifts temporally engendered patterns of dopamine release. 2014 Neuropsychopharmacology pmid:24345819
Falenski KW et al. FAAH-/- mice display differential tolerance, dependence, and cannabinoid receptor adaptation after delta 9-tetrahydrocannabinol and anandamide administration. 2010 Neuropsychopharmacology pmid:20357755
Varvel SA et al. Inhibition of fatty-acid amide hydrolase accelerates acquisition and extinction rates in a spatial memory task. 2007 Neuropsychopharmacology pmid:17047668
Sarchielli P et al. Endocannabinoids in chronic migraine: CSF findings suggest a system failure. 2007 Neuropsychopharmacology pmid:17119542
Bortolato M et al. Anxiolytic-like properties of the anandamide transport inhibitor AM404. 2006 Neuropsychopharmacology pmid:16541083
Seillier A et al. Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB₁ receptors: implications for schizophrenia. 2013 Neuropsychopharmacology pmid:23563893
Fernandez-Espejo E et al. Experimental parkinsonism alters anandamide precursor synthesis, and functional deficits are improved by AM404: a modulator of endocannabinoid function. 2004 Neuropsychopharmacology pmid:15010694
Hill MN et al. Suppression of amygdalar endocannabinoid signaling by stress contributes to activation of the hypothalamic-pituitary-adrenal axis. 2009 Neuropsychopharmacology pmid:19710634
Stein EA et al. Selective effects of the endogenous cannabinoid arachidonylethanolamide (anandamide) on regional cerebral blood flow in the rat. 1998 Neuropsychopharmacology pmid:9803424