Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Hyperinsulinism D006946 27 associated lipids
Endotoxemia D019446 27 associated lipids
Neuralgia D009437 28 associated lipids
Obesity D009765 29 associated lipids
Catalepsy D002375 30 associated lipids
Neurodegenerative Diseases D019636 32 associated lipids
Peripheral Nervous System Diseases D010523 33 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Ventricular Dysfunction, Left D018487 33 associated lipids
Memory Disorders D008569 33 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Epilepsy D004827 35 associated lipids
Fever D005334 35 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Nervous System Diseases D009422 37 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Diabetic Retinopathy D003930 39 associated lipids
Hypotension D007022 41 associated lipids
Hyperalgesia D006930 42 associated lipids
Ischemic Attack, Transient D002546 42 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Di Marzo V et al. Enhancement of anandamide formation in the limbic forebrain and reduction of endocannabinoid contents in the striatum of delta9-tetrahydrocannabinol-tolerant rats. 2000 J. Neurochem. pmid:10737621
Wang Y et al. Polymyxin B binds to anandamide and inhibits its cytotoxic effect. 2000 FEBS Lett. pmid:10734225
Muthian S et al. Synthesis and characterization of a fluorescent substrate for the N-arachidonoylethanolamine (anandamide) transmembrane carrier. 2000 J. Pharmacol. Exp. Ther. pmid:10734181
González S et al. Sex steroid influence on cannabinoid CB(1) receptor mRNA and endocannabinoid levels in the anterior pituitary gland. 2000 Biochem. Biophys. Res. Commun. pmid:10733937
Lay L et al. Pharmacological characterisation of cannabinoid CB(1) receptors in the rat and mouse. 2000 Eur. J. Pharmacol. pmid:10720647
Oliveira L et al. Effects of some isoprostanes on the human umbilical artery in vitro. 2000 Br. J. Pharmacol. pmid:10711349
Houser SJ et al. Dynorphin B and spinal analgesia: induction of antinociception by the cannabinoids CP55,940, Delta(9)-THC and anandamide. 2000 Brain Res. pmid:10700588
Arai Y et al. Sensitive determination of anandamide in rat brain utilizing a coupled-column HPLC with fluorimetric detection. 2000 Biomed. Chromatogr. pmid:10694706
Smart D et al. The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). 2000 Br. J. Pharmacol. pmid:10694225
Maccarrone M et al. Human mast cells take up and hydrolyze anandamide under the control of 5-lipoxygenase and do not express cannabinoid receptors. 2000 FEBS Lett. pmid:10692582
Lagalwar S et al. Anandamides inhibit binding to the muscarinic acetylcholine receptor. 1999 Aug-Oct J. Mol. Neurosci. pmid:10691292
Rakhshan F et al. Carrier-mediated uptake of the endogenous cannabinoid anandamide in RBL-2H3 cells. 2000 J. Pharmacol. Exp. Ther. pmid:10688610
Griffin G et al. Cloning and pharmacological characterization of the rat CB(2) cannabinoid receptor. 2000 J. Pharmacol. Exp. Ther. pmid:10688601
Tiger G et al. Pharmacological properties of rat brain fatty acid amidohydrolase in different subcellular fractions using palmitoylethanolamide as substrate. 2000 Biochem. Pharmacol. pmid:10677581
Schmid PC et al. A sensitive endocannabinoid assay. The simultaneous analysis of N-acylethanolamines and 2-monoacylglycerols. 2000 Chem. Phys. Lipids pmid:10669310
Zygmunt PM et al. Anandamide - the other side of the coin. 2000 Trends Pharmacol. Sci. pmid:10664604
Sinor AD et al. Endocannabinoids protect cerebral cortical neurons from in vitro ischemia in rats. 2000 Neurosci. Lett. pmid:10653017
Sugiura T et al. Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor. Comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells. 2000 J. Biol. Chem. pmid:10617657
Melck D et al. Suppression of nerve growth factor Trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation. 2000 Endocrinology pmid:10614630
Melck D et al. Involvement of the cAMP/protein kinase A pathway and of mitogen-activated protein kinase in the anti-proliferative effects of anandamide in human breast cancer cells. 1999 FEBS Lett. pmid:10606728
Bisogno T et al. Biosynthesis and inactivation of N-arachidonoylethanolamine (anandamide) and N-docosahexaenoylethanolamine in bovine retina. 1999 Arch. Biochem. Biophys. pmid:10577359
Járai Z et al. Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors. 1999 Proc. Natl. Acad. Sci. U.S.A. pmid:10570211
Gifford AN et al. Potentiation of the action of anandamide on hippocampal slices by the fatty acid amide hydrolase inhibitor, palmitylsulphonyl fluoride (AM 374). 1999 Eur. J. Pharmacol. pmid:10556675
Akinshola BE et al. Anandamide inhibition of recombinant AMPA receptor subunits in Xenopus oocytes is increased by forskolin and 8-bromo-cyclic AMP. 1999 Naunyn Schmiedebergs Arch. Pharmacol. pmid:10543424
Yousif MH and Oriowo MA Inhibitory effects of cannabinoid receptor ligands on electrically-evoked responses in rat isolated tracheal ring segments. 1999 Pharmacol. Res. pmid:10527656
McAllister SD et al. Cannabinoid receptors can activate and inhibit G protein-coupled inwardly rectifying potassium channels in a xenopus oocyte expression system. 1999 J. Pharmacol. Exp. Ther. pmid:10525080
Chaytor AT et al. The endothelial component of cannabinoid-induced relaxation in rabbit mesenteric artery depends on gap junctional communication. 1999 J. Physiol. (Lond.) pmid:10523421
Katayama K et al. Equilibrium in the hydrolysis and synthesis of cannabimimetic anandamide demonstrated by a purified enzyme. 1999 Biochim. Biophys. Acta pmid:10521704
Walker JM et al. Pain modulation by release of the endogenous cannabinoid anandamide. 1999 Proc. Natl. Acad. Sci. U.S.A. pmid:10518599
Wiley JL Cannabis: discrimination of "internal bliss"? 1999 Pharmacol. Biochem. Behav. pmid:10515300
Kuwae T et al. Biosynthesis and turnover of anandamide and other N-acylethanolamines in peritoneal macrophages. 1999 FEBS Lett. pmid:10508930
Leweke FM et al. Elevated endogenous cannabinoids in schizophrenia. 1999 Neuroreport pmid:10501554
Molderings GJ et al. Presynaptic cannabinoid and imidazoline receptors in the human heart and their potential relationship. 1999 Naunyn Schmiedebergs Arch. Pharmacol. pmid:10494885
Di Marzo V et al. Cannabimimetic fatty acid derivatives: the anandamide family and other endocannabinoids. 1999 Curr. Med. Chem. pmid:10469888
Di Marzo V Biosynthesis and inactivation of endocannabinoids: relevance to their proposed role as neuromodulators. 1999 Life Sci. pmid:10462065
Howlett AC et al. Signal transduction of eicosanoid CB1 receptor ligands. 1999 Life Sci. pmid:10462062
Khanolkar AD and Makriyannis A Structure-activity relationships of anandamide, an endogenous cannabinoid ligand. 1999 Life Sci. pmid:10462061
Martin BR et al. Discovery and characterization of endogenous cannabinoids. 1999 Life Sci. pmid:10462059
Melck D et al. Unsaturated long-chain N-acyl-vanillyl-amides (N-AVAMs): vanilloid receptor ligands that inhibit anandamide-facilitated transport and bind to CB1 cannabinoid receptors. 1999 Biochem. Biophys. Res. Commun. pmid:10448105
González S et al. Extrapyramidal and neuroendocrine effects of AM404, an inhibitor of the carrier-mediated transport of anandamide. 1999 Life Sci. pmid:10447218
Zygmunt PM et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. 1999 Nature pmid:10440374
Ueda N et al. An acid amidase hydrolyzing anandamide as an endogenous ligand for cannabinoid receptors. 1999 FEBS Lett. pmid:10431820
Hansen HS et al. Formation of N-acyl-phosphatidylethanolamine and N-acylethanolamine (including anandamide) during glutamate-induced neurotoxicity. 1999 Lipids pmid:10419193
Di Marzo V et al. Metabolism of anandamide and 2-arachidonoylglycerol: an historical overview and some recent developments. 1999 Lipids pmid:10419192
Zenor BN et al. Endocrine and other responses to acute administration of cannabinoid compounds to non-stressed male calves. 1999 Life Sci. pmid:10416818
De Petrocellis L et al. Finding of the endocannabinoid signalling system in Hydra, a very primitive organism: possible role in the feeding response. 1999 Neuroscience pmid:10392859
Ameri A et al. Effects of the endogeneous cannabinoid, anandamide, on neuronal activity in rat hippocampal slices. 1999 Br. J. Pharmacol. pmid:10372827
Gebremedhin D et al. Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current. 1999 Am. J. Physiol. pmid:10362691
Ng EW et al. Unique analogues of anandamide: arachidonyl ethers and carbamates and norarachidonyl carbamates and ureas. 1999 J. Med. Chem. pmid:10354405
Fimiani C et al. Morphine and anandamide stimulate intracellular calcium transients in human arterial endothelial cells: coupling to nitric oxide release. 1999 Cell. Signal. pmid:10353693