Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Alveolar Bone Loss D016301 10 associated lipids
Learning Disorders D007859 11 associated lipids
Hyperkinesis D006948 11 associated lipids
Hyperinsulinism D006946 27 associated lipids
Muscle Spasticity D009128 5 associated lipids
Hypothermia D007035 19 associated lipids
Celiac Disease D002446 16 associated lipids
Dyskinesia, Drug-Induced D004409 15 associated lipids
Ventricular Dysfunction, Left D018487 33 associated lipids
Hypertension, Portal D006975 12 associated lipids
Insulin Resistance D007333 99 associated lipids
Sleep Apnea, Obstructive D020181 9 associated lipids
Brain Concussion D001924 5 associated lipids
Endotoxemia D019446 27 associated lipids
Anorexia D000855 8 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Memory Disorders D008569 33 associated lipids
Parkinson Disease, Secondary D010302 17 associated lipids
Overweight D050177 11 associated lipids
Neurodegenerative Diseases D019636 32 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Malek N et al. Anandamide, Acting via CB2 Receptors, Alleviates LPS-Induced Neuroinflammation in Rat Primary Microglial Cultures. 2015 Neural Plast. pmid:26090232
Mechoulam R The promise of advances in the field of endocannabinoids. 2004 Feb-Apr Neuro Endocrinol. Lett. pmid:15159675
Fride E The endocannabinoid-CB receptor system: Importance for development and in pediatric disease. 2004 Feb-Apr Neuro Endocrinol. Lett. pmid:15159678
Russo EB Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? 2004 Feb-Apr Neuro Endocrinol. Lett. pmid:15159679
Wise LE et al. Fatty acid amide hydrolase (FAAH) knockout mice exhibit enhanced acquisition of an aversive, but not of an appetitive, Barnes maze task. 2009 Neurobiol Learn Mem pmid:19524055
Munguba H et al. Pre-training anandamide infusion within the basolateral amygdala impairs plus-maze discriminative avoidance task in rats. 2011 Neurobiol Learn Mem pmid:21440651
De Oliveira Alvares L et al. Differential role of the hippocampal endocannabinoid system in the memory consolidation and retrieval mechanisms. 2008 Neurobiol Learn Mem pmid:18342551
Costanzi M et al. Effects of anandamide and morphine combinations on memory consolidation in cd1 mice: involvement of dopaminergic mechanisms. 2004 Neurobiol Learn Mem pmid:14990234
Costanzi M et al. Anandamide and memory in CD1 mice: effects of immobilization stress and of prior experience. 2003 Neurobiol Learn Mem pmid:12676519
Jung KM et al. An amyloid β42-dependent deficit in anandamide mobilization is associated with cognitive dysfunction in Alzheimer's disease. 2012 Neurobiol. Aging pmid:21546126
Navarro M and Rodríguez de Fonseca F The neurobiology of cannabinoid transmission: from anandamide signaling to higher cerebral functions and disease. 1998 Neurobiol. Dis. pmid:9974172
Di Marzo V and Deutsch DG Biochemistry of the endogenous ligands of cannabinoid receptors. 1998 Neurobiol. Dis. pmid:9974173
Piomelli D et al. Endogenous cannabinoid signaling. 1998 Neurobiol. Dis. pmid:9974178
Vázquez C et al. Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: In vivo studies. 2015 Neurobiol. Dis. pmid:25917763
Hawkins V and Butt A TASK-1 channels in oligodendrocytes: a role in ischemia mediated disruption. 2013 Neurobiol. Dis. pmid:23567653
Garcia-Ovejero D et al. The endocannabinoid system is modulated in response to spinal cord injury in rats. 2009 Neurobiol. Dis. pmid:18930143
Meuth SG et al. The neuroprotective impact of the leak potassium channel TASK1 on stroke development in mice. 2009 Neurobiol. Dis. pmid:18930826
Khasabova IA et al. Increased anandamide uptake by sensory neurons contributes to hyperalgesia in a model of cancer pain. 2013 Neurobiol. Dis. pmid:23644187
Cabranes A et al. Decreased endocannabinoid levels in the brain and beneficial effects of agents activating cannabinoid and/or vanilloid receptors in a rat model of multiple sclerosis. 2005 Neurobiol. Dis. pmid:16242629
Bardell TK and Barker EL Activation of TRPC6 channels promotes endocannabinoid biosynthesis in neuronal CAD cells. 2010 Neurochem. Int. pmid:20466028
Vinod KY et al. Effect of chronic ethanol exposure and its withdrawal on the endocannabinoid system. 2006 Neurochem. Int. pmid:16822589
Sang N et al. Anandamide potentiation of miniature spontaneous excitatory synaptic transmission is mediated via IP3 pathway. 2010 Neurochem. Int. pmid:20064571
Molderings GJ et al. Noradrenaline release-inhibiting receptors on PC12 cells devoid of alpha(2(-)) and CB(1) receptors: similarities to presynaptic imidazoline and edg receptors. 2002 Neurochem. Int. pmid:11738482
Cannizzaro C et al. Presynaptic effects of anandamide and WIN55,212-2 on glutamatergic nerve endings isolated from rat hippocampus. 2006 Neurochem. Int. pmid:16325966
D'Amico M et al. Inhibition by anandamide and synthetic cannabimimetics of the release of [3H]D-aspartate and [3H]GABA from synaptosomes isolated from the rat hippocampus. 2004 Neurochem. Res. pmid:15260134
Bazinet RP et al. Rapid high-energy microwave fixation is required to determine the anandamide (N-arachidonoylethanolamine) concentration of rat brain. 2005 Neurochem. Res. pmid:16176062
Bloom AS et al. Nonclassical and endogenous cannabinoids: effects on the ordering of brain membranes. 1997 Neurochem. Res. pmid:9131634
Axelrod J and Felder CC Cannabinoid receptors and their endogenous agonist, anandamide. 1998 Neurochem. Res. pmid:9566594
Weidenfeld J et al. Effect of the brain constituent anandamide, a cannabinoid receptor agonist, on the hypothalamo-pituitary-adrenal axis in the rat. 1994 Neuroendocrinology pmid:8127398
Osei-Hyiaman D et al. Cocaine- and amphetamine-related transcript is involved in the orexigenic effect of endogenous anandamide. 2005 Neuroendocrinology pmid:16131814
Wenger T et al. The endogenous cannabinoid, anandamide, activates the hypothalamo-pituitary-adrenal axis in CB1 cannabinoid receptor knockout mice. 2003 Neuroendocrinology pmid:14688442
Yuece B et al. Cannabinoid type 1 receptor modulates intestinal propulsion by an attenuation of intestinal motor responses within the myenteric part of the peristaltic reflex. 2007 Neurogastroenterol. Motil. pmid:17727394
Terry G et al. Positron emission tomography imaging using an inverse agonist radioligand to assess cannabinoid CB1 receptors in rodents. 2008 Neuroimage pmid:18456516
Rettori E et al. Anti-inflammatory effect of the endocannabinoid anandamide in experimental periodontitis and stress in the rat. 2012 Neuroimmunomodulation pmid:22777139
Rettori V et al. Endocannabinoids in TNF-alpha and ethanol actions. 2007 Neuroimmunomodulation pmid:18073513
Centonze D et al. Lack of effect of cannabis-based treatment on clinical and laboratory measures in multiple sclerosis. 2009 Neurol. Sci. pmid:19768368
Centonze D et al. Altered anandamide degradation in attention-deficit/hyperactivity disorder. 2009 Neurology pmid:19398708
Tanimura A et al. The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. 2010 Neuron pmid:20159446
Eljaschewitsch E et al. The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. 2006 Neuron pmid:16387640
Weller K et al. TRPV1, TRPA1, and CB1 in the isolated vagus nerve--axonal chemosensitivity and control of neuropeptide release. 2011 Neuropeptides pmid:21868092
Engel MA et al. Inhibitory CB1 and activating/desensitizing TRPV1-mediated cannabinoid actions on CGRP release in rodent skin. 2011 Neuropeptides pmid:21514666
Kurjak M et al. Differential stimulatory effects of cannabinoids on VIP release and NO synthase activity in synaptosomal fractions from rat ileum. 2008 Oct-Dec Neuropeptides pmid:18829105
Umathe SN et al. Endocannabinoid analogues exacerbate marble-burying behavior in mice via TRPV1 receptor. 2012 Neuropharmacology pmid:22248639
Roberts LA et al. Methanandamide activation of a novel current in mouse trigeminal ganglion sensory neurons in vitro. 2008 Neuropharmacology pmid:17631916
Rubio M et al. CB1 receptor blockade reduces the anxiogenic-like response and ameliorates the neurochemical imbalances associated with alcohol withdrawal in rats. 2008 Neuropharmacology pmid:18371990
Wang W et al. Enhancement of apamin-sensitive medium afterhyperpolarization current by anandamide and its role in excitability control in cultured hippocampal neurons. 2011 Neuropharmacology pmid:21272594
Vela G et al. Anandamide decreases naloxone-precipitated withdrawal signs in mice chronically treated with morphine. 1995 Neuropharmacology pmid:7566503
Desroches J et al. Endocannabinoids decrease neuropathic pain-related behavior in mice through the activation of one or both peripheral CB₁ and CB₂ receptors. 2014 Neuropharmacology pmid:24148808
Piomelli D More surprises lying ahead. The endocannabinoids keep us guessing. 2014 Neuropharmacology pmid:23954677
Scherma M et al. The endogenous cannabinoid anandamide has effects on motivation and anxiety that are revealed by fatty acid amide hydrolase (FAAH) inhibition. 2008 Neuropharmacology pmid:17904589