Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Parkinson Disease, Secondary D010302 17 associated lipids
Pain D010146 64 associated lipids
Obesity D009765 29 associated lipids
Neuroblastoma D009447 66 associated lipids
Neuralgia D009437 28 associated lipids
Nervous System Diseases D009422 37 associated lipids
Nerve Degeneration D009410 53 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Neoplasms D009369 13 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Hutchins-Wiese HL et al. Hind limb suspension and long-chain omega-3 PUFA increase mRNA endocannabinoid system levels in skeletal muscle. 2012 J. Nutr. Biochem. pmid:22051448
Forsell PK et al. Metabolism of anandamide into eoxamides by 15-lipoxygenase-1 and glutathione transferases. 2012 Lipids pmid:22684912
Fowler CJ Anandamide uptake explained? 2012 Trends Pharmacol. Sci. pmid:22297258
Izzo AA et al. Inhibitory effect of cannabichromene, a major non-psychotropic cannabinoid extracted from Cannabis sativa, on inflammation-induced hypermotility in mice. 2012 Br. J. Pharmacol. pmid:22300105
Chon SH et al. Over-expression of monoacylglycerol lipase (MGL) in small intestine alters endocannabinoid levels and whole body energy balance, resulting in obesity. 2012 PLoS ONE pmid:22937137
Brown WH et al. Fatty acid amide hydrolase ablation promotes ectopic lipid storage and insulin resistance due to centrally mediated hypothyroidism. 2012 Proc. Natl. Acad. Sci. U.S.A. pmid:22912404
Krishnan G and Chatterjee N Endocannabinoids alleviate proinflammatory conditions by modulating innate immune response in muller glia during inflammation. 2012 Glia pmid:22807196
Romano MR and Lograno MD Involvement of the peroxisome proliferator-activated receptor (PPAR) alpha in vascular response of endocannabinoids in the bovine ophthalmic artery. 2012 Eur. J. Pharmacol. pmid:22429572
Xiong W et al. A common molecular basis for exogenous and endogenous cannabinoid potentiation of glycine receptors. 2012 J. Neurosci. pmid:22496565
Kenessey I et al. Revisiting CB1 receptor as drug target in human melanoma. 2012 Pathol. Oncol. Res. pmid:22447182
Petrovszki Z et al. The effects of peptide and lipid endocannabinoids on arthritic pain at the spinal level. 2012 Anesth. Analg. pmid:22451592
Tamaki C et al. Anandamide induces endothelium-dependent vasoconstriction and CGRPergic nerve-mediated vasodilatation in the rat mesenteric vascular bed. 2012 J. Pharmacol. Sci. pmid:22510966
Kuc C et al. Arachidonoyl ethanolamide (AEA)-induced apoptosis is mediated by J-series prostaglandins and is enhanced by fatty acid amide hydrolase (FAAH) blockade. 2012 Mol. Carcinog. pmid:21432910
Proto MC et al. Interaction of endocannabinoid system and steroid hormones in the control of colon cancer cell growth. 2012 J. Cell. Physiol. pmid:21412772
Puighermanal E et al. Cellular and intracellular mechanisms involved in the cognitive impairment of cannabinoids. 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108544
Starowicz K and Przewlocka B Modulation of neuropathic-pain-related behaviour by the spinal endocannabinoid/endovanilloid system. 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108547
Rani Sagar D et al. Dynamic changes to the endocannabinoid system in models of chronic pain. 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108548
Campos AC et al. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108553
Psychoyos D et al. Cannabinoid receptor 1 signaling in embryo neurodevelopment. 2012 Birth Defects Res. B Dev. Reprod. Toxicol. pmid:22311661
Sordelli MS et al. Cyclooxygenase-2 prostaglandins mediate anandamide-inhibitory action on nitric oxide synthase activity in the receptive rat uterus. 2012 Eur. J. Pharmacol. pmid:22554772
Roy A et al. Anandamide modulates carotid sinus nerve afferent activity via TRPV1 receptors increasing responses to heat. 2012 J. Appl. Physiol. pmid:21903882
Butler RK et al. Fear-induced suppression of nociceptive behaviour and activation of Akt signalling in the rat periaqueductal grey: role of fatty acid amide hydrolase. 2012 J. Psychopharmacol. (Oxford) pmid:21926424
Khasabova IA et al. Cannabinoid type-1 receptor reduces pain and neurotoxicity produced by chemotherapy. 2012 J. Neurosci. pmid:22593077
Edwards JG et al. A novel non-CB1/TRPV1 endocannabinoid-mediated mechanism depresses excitatory synapses on hippocampal CA1 interneurons. 2012 Hippocampus pmid:21069781
Haruta C [Effects of anandamide on IL-11 production through the TRPV1 of human periodontal ligament cells]. 2012 Kokubyo Gakkai Zasshi pmid:22568077
Goonawardena AV et al. Pharmacological elevation of anandamide impairs short-term memory by altering the neurophysiology in the hippocampus. 2011 Oct-Nov Neuropharmacology pmid:21767554
Walentiny DM et al. The endogenous cannabinoid anandamide shares discriminative stimulus effects with ∆(9)-tetrahydrocannabinol in fatty acid amide hydrolase knockout mice. 2011 Eur. J. Pharmacol. pmid:21300050
Naidoo V et al. A new generation fatty acid amide hydrolase inhibitor protects against kainate-induced excitotoxicity. 2011 J. Mol. Neurosci. pmid:21069475
Bari M et al. Characterization of the endocannabinoid system in mouse embryonic stem cells. 2011 Stem Cells Dev. pmid:20446814
Weller K et al. TRPV1, TRPA1, and CB1 in the isolated vagus nerve--axonal chemosensitivity and control of neuropeptide release. 2011 Neuropeptides pmid:21868092
Rossi S et al. Cannabinoid CB1 receptors regulate neuronal TNF-α effects in experimental autoimmune encephalomyelitis. 2011 Brain Behav. Immun. pmid:21473912
Gamaleddin I et al. The selective anandamide transport inhibitor VDM11 attenuates reinstatement of nicotine seeking behaviour, but does not affect nicotine intake. 2011 Br. J. Pharmacol. pmid:21501143
Howlett AC et al. Endocannabinoid tone versus constitutive activity of cannabinoid receptors. 2011 Br. J. Pharmacol. pmid:21545414
Carr RL et al. Effect of developmental chlorpyrifos exposure, on endocannabinoid metabolizing enzymes, in the brain of juvenile rats. 2011 Toxicol. Sci. pmid:21507991
Qi J et al. Painful pathways induced by TLR stimulation of dorsal root ganglion neurons. 2011 J. Immunol. pmid:21515789
Steiner AA et al. The hypothermic response to bacterial lipopolysaccharide critically depends on brain CB1, but not CB2 or TRPV1, receptors. 2011 J. Physiol. (Lond.) pmid:21486787
Liao YS et al. [Anandamide inhibits the growth of colorectal cancer cells through CB1 and lipid rafts]. 2011 Zhonghua Zhong Liu Za Zhi pmid:21575494
Shekhar C Mixed signals: cannabinoid system offers new therapeutic possibilities as well as challenges. 2011 Chem. Biol. pmid:21609833
Umathe SN et al. Involvement of endocannabinoids in antidepressant and anti-compulsive effect of fluoxetine in mice. 2011 Behav. Brain Res. pmid:21549765
Arias-Carrión O et al. Biochemical modulation of the sleep-wake cycle: endogenous sleep-inducing factors. 2011 J. Neurosci. Res. pmid:21557294
Sordelli MS et al. The effect of anandamide on uterine nitric oxide synthase activity depends on the presence of the blastocyst. 2011 PLoS ONE pmid:21559512
Engel MA et al. Inhibitory CB1 and activating/desensitizing TRPV1-mediated cannabinoid actions on CGRP release in rodent skin. 2011 Neuropeptides pmid:21514666
Hutchins HL et al. Eicosapentaenoic acid decreases expression of anandamide synthesis enzyme and cannabinoid receptor 2 in osteoblast-like cells. 2011 J. Nutr. Biochem. pmid:20951563
Gervasi MG et al. Anandamide capacitates bull spermatozoa through CB1 and TRPV1 activation. 2011 PLoS ONE pmid:21347292
Quercioli A et al. Elevated endocannabinoid plasma levels are associated with coronary circulatory dysfunction in obesity. 2011 Eur. Heart J. pmid:21303779
Correa F et al. The endocannabinoid anandamide downregulates IL-23 and IL-12 subunits in a viral model of multiple sclerosis: evidence for a cross-talk between IL-12p70/IL-23 axis and IL-10 in microglial cells. 2011 Brain Behav. Immun. pmid:21310228
Palermo G et al. Covalent inhibitors of fatty acid amide hydrolase: a rationale for the activity of piperidine and piperazine aryl ureas. 2011 J. Med. Chem. pmid:21830831
Zoerner AA et al. Allergen challenge increases anandamide in bronchoalveolar fluid of patients with allergic asthma. 2011 Clin. Pharmacol. Ther. pmid:21716266
Brailoiu GC et al. Intracellular cannabinoid type 1 (CB1) receptors are activated by anandamide. 2011 J. Biol. Chem. pmid:21719698
Catanzaro G et al. Effect of capacitation on the endocannabinoid system of mouse sperm. 2011 Mol. Cell. Endocrinol. pmid:21723369