Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Seizures D012640 87 associated lipids
Nerve Degeneration D009410 53 associated lipids
Peptic Ulcer D010437 19 associated lipids
Hypertension D006973 115 associated lipids
Ischemic Attack, Transient D002546 42 associated lipids
Substance-Related Disorders D019966 2 associated lipids
Hepatitis D006505 11 associated lipids
Hyperalgesia D006930 42 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Brain Damage, Chronic D001925 6 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Mukherjee S et al. Species comparison and pharmacological characterization of rat and human CB2 cannabinoid receptors. 2004 Eur. J. Pharmacol. pmid:15556131
López-Miranda V et al. Anandamide vehicles: a comparative study. 2004 Eur. J. Pharmacol. pmid:15556148
Rossato M et al. Human sperm express cannabinoid receptor Cb1, the activation of which inhibits motility, acrosome reaction, and mitochondrial function. 2005 J. Clin. Endocrinol. Metab. pmid:15562018
Maccarrone M et al. Up-regulation of the endocannabinoid system in the uterus of leptin knockout (ob/ob) mice and implications for fertility. 2005 Mol. Hum. Reprod. pmid:15563449
Patel S et al. The postmortal accumulation of brain N-arachidonylethanolamine (anandamide) is dependent upon fatty acid amide hydrolase activity. 2005 J. Lipid Res. pmid:15576840
Fegley D et al. Characterization of the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597): effects on anandamide and oleoylethanolamide deactivation. 2005 J. Pharmacol. Exp. Ther. pmid:15579492
Braun M and Kietzmann M Ischaemia-reperfusion injury in the isolated haemoperfused bovine uterus: an in vitro model of acute inflammation. 2004 Altern Lab Anim pmid:15601235
Dinis P et al. Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis. 2004 J. Neurosci. pmid:15601931
Gavva NR et al. AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. 2005 J. Pharmacol. Exp. Ther. pmid:15615864
Oz M et al. Effects of saturated long-chain N-acylethanolamines on voltage-dependent Ca2+ fluxes in rabbit T-tubule membranes. 2005 Arch. Biochem. Biophys. pmid:15639235
Bari M et al. Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. Implications for anandamide-induced apoptosis. 2005 J. Biol. Chem. pmid:15657045
O'Sullivan SE et al. Vascular effects of delta 9-tetrahydrocannabinol (THC), anandamide and N-arachidonoyldopamine (NADA) in the rat isolated aorta. 2005 Eur. J. Pharmacol. pmid:15659311
Kim SR et al. Transient receptor potential vanilloid subtype 1 mediates cell death of mesencephalic dopaminergic neurons in vivo and in vitro. 2005 J. Neurosci. pmid:15659603
Mbvundula EC et al. Effects of cannabinoids on nitric oxide production by chondrocytes and proteoglycan degradation in cartilage. 2005 Biochem. Pharmacol. pmid:15670582
Kohro S et al. Reductions in levels of bacterial superantigens/cannabinoids by plasma exchange in a patient with severe toxic shock syndrome. 2004 Anaesth Intensive Care pmid:15675223
Rodella LF et al. AM404, an inhibitor of anandamide reuptake decreases Fos-immunoreactivity in the spinal cord of neuropathic rats after non-noxious stimulation. 2005 Eur. J. Pharmacol. pmid:15680264
Oz M et al. Additive effects of endogenous cannabinoid anandamide and ethanol on alpha7-nicotinic acetylcholine receptor-mediated responses in Xenopus Oocytes. 2005 J. Pharmacol. Exp. Ther. pmid:15687372
Lam PM et al. Characterization and comparison of recombinant human and rat TRPV1 receptors: effects of exo- and endocannabinoids. 2005 Br J Anaesth pmid:15722382
Oddi S et al. Confocal microscopy and biochemical analysis reveal spatial and functional separation between anandamide uptake and hydrolysis in human keratinocytes. 2005 Cell. Mol. Life Sci. pmid:15723173
Wiley JL et al. Task specificity of cross-tolerance between Delta9-tetrahydrocannabinol and anandamide analogs in mice. 2005 Eur. J. Pharmacol. pmid:15740725
Mestre L et al. Pharmacological modulation of the endocannabinoid system in a viral model of multiple sclerosis. 2005 J. Neurochem. pmid:15748152
Domenicali M et al. Increased anandamide induced relaxation in mesenteric arteries of cirrhotic rats: role of cannabinoid and vanilloid receptors. 2005 Gut pmid:15753538
Zhang N et al. A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPV1. 2005 Proc. Natl. Acad. Sci. U.S.A. pmid:15764707
Fezza F et al. Radiochromatographic assay of N-acyl-phosphatidylethanolamine-specific phospholipase D activity. 2005 Anal. Biochem. pmid:15766717
Minowa S et al. Capsaicin- and anandamide-induced gastric acid secretion via vanilloid receptor type 1 (TRPV1) in rat brain. 2005 Brain Res. pmid:15781048
Sandberg A and Fowler CJ Measurement of saturable and non-saturable components of anandamide uptake into P19 embryonic carcinoma cells in the presence of fatty acid-free bovine serum albumin. 2005 Chem. Phys. Lipids pmid:15784231
De Bank PA et al. A spectrophotometric assay for fatty acid amide hydrolase suitable for high-throughput screening. 2005 Biochem. Pharmacol. pmid:15794939
Fowler CJ and Tiger G Cyclooxygenation of the arachidonoyl side chain of 1-arachidonoylglycerol and related compounds block their ability to prevent anandamide and 2-oleoylglycerol metabolism by rat brain in vitro. 2005 Biochem. Pharmacol. pmid:15794945
Chen P et al. Induction of cyclooxygenase-2 by anandamide in cerebral microvascular endothelium. 2005 Microvasc. Res. pmid:15797258
Kurabayashi M et al. 2-Arachidonoylglycerol increases in ischemia-reperfusion injury of the rat liver. 2005 Jan-Feb J Invest Surg pmid:15804949
Kvasnicka T [Endocannabinoids--the new option in the treatment of metabolic syndrome and in smoking cessation]. 2005 Cas. Lek. Cesk. pmid:15807291
Tóth A et al. Different vanilloid agonists cause different patterns of calcium response in CHO cells heterologously expressing rat TRPV1. 2005 Life Sci. pmid:15820503
Pacher P et al. Hemodynamic profile, responsiveness to anandamide, and baroreflex sensitivity of mice lacking fatty acid amide hydrolase. 2005 Am. J. Physiol. Heart Circ. Physiol. pmid:15821037
O'Sullivan SE et al. The effects of Delta9-tetrahydrocannabinol in rat mesenteric vasculature, and its interactions with the endocannabinoid anandamide. 2005 Br. J. Pharmacol. pmid:15821751
Chen J et al. Finding of endocannabinoids in human eye tissues: implications for glaucoma. 2005 Biochem. Biophys. Res. Commun. pmid:15823551
Chen JZ et al. Preferred conformations of endogenous cannabinoid ligand anandamide. 2005 Life Sci. pmid:15826873
Randall MD The cardiovascular actions of anandamide: more targets? 2005 Br. J. Pharmacol. pmid:15834438
Kwolek G et al. Central and peripheral components of the pressor effect of anandamide in urethane-anaesthetized rats. 2005 Br. J. Pharmacol. pmid:15834445
Monteleone P et al. Blood levels of the endocannabinoid anandamide are increased in anorexia nervosa and in binge-eating disorder, but not in bulimia nervosa. 2005 Neuropsychopharmacology pmid:15841111
Siegmund SV et al. Anandamide induces necrosis in primary hepatic stellate cells. 2005 Hepatology pmid:15841466
Mishima K et al. Cannabidiol prevents cerebral infarction via a serotonergic 5-hydroxytryptamine1A receptor-dependent mechanism. 2005 Stroke pmid:15845890
Pisani A et al. High endogenous cannabinoid levels in the cerebrospinal fluid of untreated Parkinson's disease patients. 2005 Ann. Neurol. pmid:15852389
Glass M et al. Misidentification of prostamides as prostaglandins. 2005 J. Lipid Res. pmid:15863842
Osei-Hyiaman D et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. 2005 J. Clin. Invest. pmid:15864349
Ashton CH et al. Cannabinoids in bipolar affective disorder: a review and discussion of their therapeutic potential. 2005 J. Psychopharmacol. (Oxford) pmid:15888515
Guo Y et al. N-acylphosphatidylethanolamine-hydrolyzing phospholipase D is an important determinant of uterine anandamide levels during implantation. 2005 J. Biol. Chem. pmid:15890658
Kaplan BL et al. Inhibition of leukocyte function and interleukin-2 gene expression by 2-methylarachidonyl-(2'-fluoroethyl)amide, a stable congener of the endogenous cannabinoid receptor ligand anandamide. 2005 Toxicol. Appl. Pharmacol. pmid:15893538
van der Stelt M et al. A role for endocannabinoids in the generation of parkinsonism and levodopa-induced dyskinesia in MPTP-lesioned non-human primate models of Parkinson's disease. 2005 FASEB J. pmid:15894565
Vandevoorde S and Fowler CJ Inhibition of fatty acid amide hydrolase and monoacylglycerol lipase by the anandamide uptake inhibitor VDM11: evidence that VDM11 acts as an FAAH substrate. 2005 Br. J. Pharmacol. pmid:15895107
Venderova K et al. Differential effects of endocannabinoids on [(3)H]-GABA uptake in the rat globus pallidus. 2005 Exp. Neurol. pmid:15899265