Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Seizures D012640 87 associated lipids
Nerve Degeneration D009410 53 associated lipids
Peptic Ulcer D010437 19 associated lipids
Hypertension D006973 115 associated lipids
Ischemic Attack, Transient D002546 42 associated lipids
Substance-Related Disorders D019966 2 associated lipids
Hepatitis D006505 11 associated lipids
Hyperalgesia D006930 42 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Brain Damage, Chronic D001925 6 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Davies JW et al. Pharmacology of capsaicin-, anandamide-, and N-arachidonoyl-dopamine-evoked cell death in a homogeneous transient receptor potential vanilloid subtype 1 receptor population. 2010 Br J Anaesth pmid:20354008
Jarzimski C et al. Changes of blood endocannabinoids during anaesthesia: a special case for fatty acid amide hydrolase inhibition by propofol? 2012 Br J Clin Pharmacol pmid:22242687
Morgan CJ et al. Cerebrospinal fluid anandamide levels, cannabis use and psychotic-like symptoms. 2013 Br J Psychiatry pmid:23580381
Koethe D et al. Anandamide elevation in cerebrospinal fluid in initial prodromal states of psychosis. 2009 Br J Psychiatry pmid:19336792
Pei R et al. Low-fat yogurt consumption reduces biomarkers of chronic inflammation and inhibits markers of endotoxin exposure in healthy premenopausal women: a randomised controlled trial. 2017 Br. J. Nutr. pmid:29179781
Okine BN et al. Lack of effect of chronic pre-treatment with the FAAH inhibitor URB597 on inflammatory pain behaviour: evidence for plastic changes in the endocannabinoid system. 2012 Br. J. Pharmacol. pmid:22595021
Ho WS and Gardiner SM Acute hypertension reveals depressor and vasodilator effects of cannabinoids in conscious rats. 2009 Br. J. Pharmacol. pmid:19133994
Grainger J and Boachie-Ansah G Anandamide-induced relaxation of sheep coronary arteries: the role of the vascular endothelium, arachidonic acid metabolites and potassium channels. 2001 Br. J. Pharmacol. pmid:11682448
Sun Y et al. Cannabinoid activation of PPAR alpha; a novel neuroprotective mechanism. 2007 Br. J. Pharmacol. pmid:17906680
Ryberg E et al. The orphan receptor GPR55 is a novel cannabinoid receptor. 2007 Br. J. Pharmacol. pmid:17876302
Ross RA et al. Structure-activity relationship for the endogenous cannabinoid, anandamide, and certain of its analogues at vanilloid receptors in transfected cells and vas deferens. 2001 Br. J. Pharmacol. pmid:11159715
White R and Hiley CR The actions of some cannabinoid receptor ligands in the rat isolated mesenteric artery. 1998 Br. J. Pharmacol. pmid:9806337
Köfalvi A et al. Anandamide and NADA bi-directionally modulate presynaptic Ca2+ levels and transmitter release in the hippocampus. 2007 Br. J. Pharmacol. pmid:17435795
Zoratti C et al. Anandamide initiates Ca(2+) signaling via CB2 receptor linked to phospholipase C in calf pulmonary endothelial cells. 2003 Br. J. Pharmacol. pmid:14645143
Roberts LA et al. Anandamide is a partial agonist at native vanilloid receptors in acutely isolated mouse trigeminal sensory neurons. 2002 Br. J. Pharmacol. pmid:12359623
Price TJ et al. Modulation of trigeminal sensory neuron activity by the dual cannabinoid-vanilloid agonists anandamide, N-arachidonoyl-dopamine and arachidonyl-2-chloroethylamide. 2004 Br. J. Pharmacol. pmid:15006899
Taddei S Evolving the concept of regulation of vascular tone in humans. 2005 Br. J. Pharmacol. pmid:15997231
Izzo AA et al. Inhibitory effect of cannabichromene, a major non-psychotropic cannabinoid extracted from Cannabis sativa, on inflammation-induced hypermotility in mice. 2012 Br. J. Pharmacol. pmid:22300105
White R et al. Mechanisms of anandamide-induced vasorelaxation in rat isolated coronary arteries. 2001 Br. J. Pharmacol. pmid:11606334
Tucker RC et al. The endogenous cannabinoid agonist, anandamide stimulates sensory nerves in guinea-pig airways. 2001 Br. J. Pharmacol. pmid:11226144
Hind WH et al. Endocannabinoids modulate human blood-brain barrier permeability in vitro. 2015 Br. J. Pharmacol. pmid:25651941
Woodhams SG et al. Spinal administration of the monoacylglycerol lipase inhibitor JZL184 produces robust inhibitory effects on nociceptive processing and the development of central sensitization in the rat. 2012 Br. J. Pharmacol. pmid:22924700
Ghasemi M et al. Role of the nitric oxide pathway and the endocannabinoid system in neurogenic relaxation of corpus cavernosum from biliary cirrhotic rats. 2007 Br. J. Pharmacol. pmid:17486141
Ameri A et al. Effects of the endogeneous cannabinoid, anandamide, on neuronal activity in rat hippocampal slices. 1999 Br. J. Pharmacol. pmid:10372827
Klegeris A et al. Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. 2003 Br. J. Pharmacol. pmid:12813001
Fraga D et al. Endogenous cannabinoids induce fever through the activation of CB1 receptors. 2009 Br. J. Pharmacol. pmid:19681872
Moreno-Sanz G et al. Pharmacological characterization of the peripheral FAAH inhibitor URB937 in female rodents: interaction with the Abcg2 transporter in the blood-placenta barrier. 2012 Br. J. Pharmacol. pmid:22774772
Van den Bossche I and Vanheel B Influence of cannabinoids on the delayed rectifier in freshly dissociated smooth muscle cells of the rat aorta. 2000 Br. J. Pharmacol. pmid:10960073
Chang L et al. Inhibition of fatty acid amide hydrolase produces analgesia by multiple mechanisms. 2006 Br. J. Pharmacol. pmid:16501580
Lau BK et al. Endocannabinoid modulation by FAAH and monoacylglycerol lipase within the analgesic circuitry of the periaqueductal grey. 2014 Br. J. Pharmacol. pmid:25041240
Hillard CJ and Jarrahian A Cellular accumulation of anandamide: consensus and controversy. 2003 Br. J. Pharmacol. pmid:12970089
O'Sullivan SE et al. Heterogeneity in the mechanisms of vasorelaxation to anandamide in resistance and conduit rat mesenteric arteries. 2004 Br. J. Pharmacol. pmid:15148250
Randall MD et al. The complexities of the cardiovascular actions of cannabinoids. 2004 Br. J. Pharmacol. pmid:15131000
Pakdeechote P et al. Cannabinoids inhibit noradrenergic and purinergic sympathetic cotransmission in the rat isolated mesenteric arterial bed. 2007 Br. J. Pharmacol. pmid:17641668
Thors L et al. The 'specific' tyrosine kinase inhibitor genistein inhibits the enzymic hydrolysis of anandamide: implications for anandamide uptake. 2007 Br. J. Pharmacol. pmid:17325653
Fleming I et al. Inhibition of the production of endothelium-derived hyperpolarizing factor by cannabinoid receptor agonists. 1999 Br. J. Pharmacol. pmid:10193775
Romano MR and Lograno MD Cannabinoid agonists induce relaxation in the bovine ophthalmic artery: evidences for CB1 receptors, nitric oxide and potassium channels. 2006 Br. J. Pharmacol. pmid:16474412
Ruiz-Llorente L et al. Characterization of an anandamide degradation system in prostate epithelial PC-3 cells: synthesis of new transporter inhibitors as tools for this study. 2004 Br. J. Pharmacol. pmid:14718261
Di Marzo V et al. The role of endocannabinoids in the regulation of gastric emptying: alterations in mice fed a high-fat diet. 2008 Br. J. Pharmacol. pmid:18223666
Vandevoorde S et al. Lack of selectivity of URB602 for 2-oleoylglycerol compared to anandamide hydrolysis in vitro. 2007 Br. J. Pharmacol. pmid:17143303
Evans RM et al. Chronic exposure of sensory neurones to increased levels of nerve growth factor modulates CB1/TRPV1 receptor crosstalk. 2007 Br. J. Pharmacol. pmid:17700720
Wheal AJ et al. Cardiovascular effects of cannabinoids in conscious spontaneously hypertensive rats. 2007 Br. J. Pharmacol. pmid:17700721
Matias I et al. Role and regulation of acylethanolamides in energy balance: focus on adipocytes and beta-cells. 2007 Br. J. Pharmacol. pmid:17704823
Mendiguren A and Pineda J Effect of the CB(1) receptor antagonists rimonabant and AM251 on the firing rate of dorsal raphe nucleus neurons in rat brain slices. 2009 Br. J. Pharmacol. pmid:19845674
Herradón E et al. Characterization of the vasorelaxant mechanisms of the endocannabinoid anandamide in rat aorta. 2007 Br. J. Pharmacol. pmid:17704831
De Petrocellis L et al. A re-evaluation of 9-HODE activity at TRPV1 channels in comparison with anandamide: enantioselectivity and effects at other TRP channels and in sensory neurons. 2012 Br. J. Pharmacol. pmid:22861649
Ho WS and Randall MD Endothelium-dependent metabolism by endocannabinoid hydrolases and cyclooxygenases limits vasorelaxation to anandamide and 2-arachidonoylglycerol. 2007 Br. J. Pharmacol. pmid:17245358
Wheal AJ et al. Effects of chronic nitric oxide synthase inhibition on the cardiovascular responses to cannabinoids in vivo and in vitro. 2007 Br. J. Pharmacol. pmid:17245361
Izzo AA et al. Effect of vanilloid drugs on gastrointestinal transit in mice. 2001 Br. J. Pharmacol. pmid:11264233
Gauldie SD et al. Anandamide activates peripheral nociceptors in normal and arthritic rat knee joints. 2001 Br. J. Pharmacol. pmid:11159713
Stewart JL and McMahon LR The fatty acid amide hydrolase inhibitor URB 597: interactions with anandamide in rhesus monkeys. 2011 Br. J. Pharmacol. pmid:21449917
Makwana R et al. Pharmacological characterization of cannabinoid receptor activity in the rat-isolated ileum myenteric plexus-longitudinal muscle preparation. 2010 Br. J. Pharmacol. pmid:20233228
Patel S et al. The general anesthetic propofol increases brain N-arachidonylethanolamine (anandamide) content and inhibits fatty acid amide hydrolase. 2003 Br. J. Pharmacol. pmid:12839875
Gamaleddin I et al. The selective anandamide transport inhibitor VDM11 attenuates reinstatement of nicotine seeking behaviour, but does not affect nicotine intake. 2011 Br. J. Pharmacol. pmid:21501143
Howlett AC et al. Endocannabinoid tone versus constitutive activity of cannabinoid receptors. 2011 Br. J. Pharmacol. pmid:21545414
Booker L et al. The fatty acid amide hydrolase (FAAH) inhibitor PF-3845 acts in the nervous system to reverse LPS-induced tactile allodynia in mice. 2012 Br. J. Pharmacol. pmid:21506952
Jamshidi N and Taylor DA Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. 2001 Br. J. Pharmacol. pmid:11704633
Evans RM et al. Modulation of sensory neuron potassium conductances by anandamide indicates roles for metabolites. 2008 Br. J. Pharmacol. pmid:18376419
Costa B et al. AM404, an inhibitor of anandamide uptake, prevents pain behaviour and modulates cytokine and apoptotic pathways in a rat model of neuropathic pain. 2006 Br. J. Pharmacol. pmid:16770320
Solinas M et al. The endocannabinoid system in brain reward processes. 2008 Br. J. Pharmacol. pmid:18414385
Shouman B et al. Endocannabinoids potently protect the newborn brain against AMPA-kainate receptor-mediated excitotoxic damage. 2006 Br. J. Pharmacol. pmid:16682966
McHugh D et al. Δ(9) -Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells. 2012 Br. J. Pharmacol. pmid:21595653
O'Sullivan SE et al. The effects of Delta9-tetrahydrocannabinol in rat mesenteric vasculature, and its interactions with the endocannabinoid anandamide. 2005 Br. J. Pharmacol. pmid:15821751
Kawahara H et al. Inhibition of fatty acid amide hydrolase unmasks CB1 receptor and TRPV1 channel-mediated modulation of glutamatergic synaptic transmission in midbrain periaqueductal grey. 2011 Br. J. Pharmacol. pmid:21175570
De Petrocellis L et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. 2011 Br. J. Pharmacol. pmid:21175579
Stanford SJ et al. Identification of two distinct vasodilator pathways activated by ATP in the mesenteric bed of the rat. 2001 Br. J. Pharmacol. pmid:11454655
Randall MD The cardiovascular actions of anandamide: more targets? 2005 Br. J. Pharmacol. pmid:15834438
Kwolek G et al. Central and peripheral components of the pressor effect of anandamide in urethane-anaesthetized rats. 2005 Br. J. Pharmacol. pmid:15834445
Mang CF et al. Differential effects of anandamide on acetylcholine release in the guinea-pig ileum mediated via vanilloid and non-CB1 cannabinoid receptors. 2001 Br. J. Pharmacol. pmid:11522608
Jonsson KO et al. Effects of homologues and analogues of palmitoylethanolamide upon the inactivation of the endocannabinoid anandamide. 2001 Br. J. Pharmacol. pmid:11498512
Guindon J et al. Peripheral antinociceptive effects of inhibitors of monoacylglycerol lipase in a rat model of inflammatory pain. 2011 Br. J. Pharmacol. pmid:21198549
Craib SJ et al. A possible role of lipoxygenase in the activation of vanilloid receptors by anandamide in the guinea-pig bronchus. 2001 Br. J. Pharmacol. pmid:11522594
White R and Hiley CR A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery. 1997 Br. J. Pharmacol. pmid:9422801
Zygmunt PM et al. Studies on the effects of anandamide in rat hepatic artery. 1997 Br. J. Pharmacol. pmid:9422814
Thomas A et al. Evidence that the plant cannabinoid Delta9-tetrahydrocannabivarin is a cannabinoid CB1 and CB2 receptor antagonist. 2005 Br. J. Pharmacol. pmid:16205722
Andrag E and Curtis MJ Feasibility of targeting ischaemia-related ventricular arrhythmias by mimicry of endogenous protection by endocannabinoids. 2013 Br. J. Pharmacol. pmid:23713981
Ford WR et al. Evidence of a novel site mediating anandamide-induced negative inotropic and coronary vasodilatator responses in rat isolated hearts. 2002 Br. J. Pharmacol. pmid:11877326
Scherma M et al. The anandamide transport inhibitor AM404 reduces the rewarding effects of nicotine and nicotine-induced dopamine elevations in the nucleus accumbens shell in rats. 2012 Br. J. Pharmacol. pmid:21557729
Lever IJ and Malcangio M CB(1) receptor antagonist SR141716A increases capsaicin-evoked release of Substance P from the adult mouse spinal cord. 2002 Br. J. Pharmacol. pmid:11786475
Ishac EJ et al. Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CB1 receptors on peripheral sympathetic nerves. 1996 Br. J. Pharmacol. pmid:8864538
Mair KM et al. Interaction between anandamide and sphingosine-1-phosphate in mediating vasorelaxation in rat coronary artery. 2010 Br. J. Pharmacol. pmid:20718749
Moezi L et al. Anandamide mediates hyperdynamic circulation in cirrhotic rats via CB(1) and VR(1) receptors. 2006 Br. J. Pharmacol. pmid:17043671
Bisogno T et al. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. 2001 Br. J. Pharmacol. pmid:11606325
Li H et al. Inhibition of fatty acid amide hydrolase activates Nrf2 signalling and induces heme oxygenase 1 transcription in breast cancer cells. 2013 Br. J. Pharmacol. pmid:23347118
Jacobsson SO and Fowler CJ Characterization of palmitoylethanolamide transport in mouse Neuro-2a neuroblastoma and rat RBL-2H3 basophilic leukaemia cells: comparison with anandamide. 2001 Br. J. Pharmacol. pmid:11309246
Spicuzza L et al. Characterization of the effects of cannabinoids on guinea-pig tracheal smooth muscle tone: role in the modulation of acetylcholine release from parasympathetic nerves. 2000 Br. J. Pharmacol. pmid:10928980
Evans RM et al. Multiple actions of anandamide on neonatal rat cultured sensory neurones. 2004 Br. J. Pharmacol. pmid:15023857
Stein EA et al. Physiological and behavioural effects of the endogenous cannabinoid, arachidonylethanolamide (anandamide), in the rat. 1996 Br. J. Pharmacol. pmid:8872363
Thors L et al. Inhibition of fatty acid amide hydrolase by kaempferol and related naturally occurring flavonoids. 2008 Br. J. Pharmacol. pmid:18552875
Izzo AA et al. Peripheral endocannabinoid dysregulation in obesity: relation to intestinal motility and energy processing induced by food deprivation and re-feeding. 2009 Br. J. Pharmacol. pmid:19371345
Ligresti A et al. New potent and selective inhibitors of anandamide reuptake with antispastic activity in a mouse model of multiple sclerosis. 2006 Br. J. Pharmacol. pmid:16284631
Maione S et al. Antinociceptive effects of tetrazole inhibitors of endocannabinoid inactivation: cannabinoid and non-cannabinoid receptor-mediated mechanisms. 2008 Br. J. Pharmacol. pmid:18660824
O'Brien LD et al. Anandamide transport inhibition by ARN272 attenuates nausea-induced behaviour in rats, and vomiting in shrews (Suncus murinus). 2013 Br. J. Pharmacol. pmid:23991698
Plane F et al. Evidence that anandamide and EDHF act via different mechanisms in rat isolated mesenteric arteries. 1997 Br. J. Pharmacol. pmid:9283682
Soria-Gómez E et al. Pharmacological enhancement of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-Fos expression in the hypothalamus. 2007 Br. J. Pharmacol. pmid:17549045
Kagaya M et al. Characterization of the anandamide induced depolarization of guinea-pig isolated vagus nerve. 2002 Br. J. Pharmacol. pmid:12183329
Gardiner SM et al. Complex regional haemodynamic effects of anandamide in conscious rats. 2002 Br. J. Pharmacol. pmid:11959791
Jia Y et al. Anandamide induces cough in conscious guinea-pigs through VR1 receptors. 2002 Br. J. Pharmacol. pmid:12411414
Geraghty DP and Mazzone SB Respiratory actions of vanilloid receptor agonists in the nucleus of the solitary tract: comparison of resiniferatoxin with non-pungent agents and anandamide. 2002 Br. J. Pharmacol. pmid:12411424
De Petrocellis L et al. Actions of two naturally occurring saturated N-acyldopamines on transient receptor potential vanilloid 1 (TRPV1) channels. 2004 Br. J. Pharmacol. pmid:15289293