Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Migraine Disorders D008881 11 associated lipids
Morphine Dependence D009021 9 associated lipids
Multiple Sclerosis D009103 13 associated lipids
Muscle Spasticity D009128 5 associated lipids
Mycoses D009181 18 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Neoplasms D009369 13 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Nerve Degeneration D009410 53 associated lipids
Nervous System Diseases D009422 37 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Bardell TK and Barker EL Activation of TRPC6 channels promotes endocannabinoid biosynthesis in neuronal CAD cells. 2010 Neurochem. Int. pmid:20466028
Sang N et al. Anandamide potentiation of miniature spontaneous excitatory synaptic transmission is mediated via IP3 pathway. 2010 Neurochem. Int. pmid:20064571
Molderings GJ et al. Noradrenaline release-inhibiting receptors on PC12 cells devoid of alpha(2(-)) and CB(1) receptors: similarities to presynaptic imidazoline and edg receptors. 2002 Neurochem. Int. pmid:11738482
Navarro M and Rodríguez de Fonseca F The neurobiology of cannabinoid transmission: from anandamide signaling to higher cerebral functions and disease. 1998 Neurobiol. Dis. pmid:9974172
Di Marzo V and Deutsch DG Biochemistry of the endogenous ligands of cannabinoid receptors. 1998 Neurobiol. Dis. pmid:9974173
Piomelli D et al. Endogenous cannabinoid signaling. 1998 Neurobiol. Dis. pmid:9974178
Vázquez C et al. Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: In vivo studies. 2015 Neurobiol. Dis. pmid:25917763
Hawkins V and Butt A TASK-1 channels in oligodendrocytes: a role in ischemia mediated disruption. 2013 Neurobiol. Dis. pmid:23567653
Garcia-Ovejero D et al. The endocannabinoid system is modulated in response to spinal cord injury in rats. 2009 Neurobiol. Dis. pmid:18930143
Meuth SG et al. The neuroprotective impact of the leak potassium channel TASK1 on stroke development in mice. 2009 Neurobiol. Dis. pmid:18930826
Khasabova IA et al. Increased anandamide uptake by sensory neurons contributes to hyperalgesia in a model of cancer pain. 2013 Neurobiol. Dis. pmid:23644187
Cabranes A et al. Decreased endocannabinoid levels in the brain and beneficial effects of agents activating cannabinoid and/or vanilloid receptors in a rat model of multiple sclerosis. 2005 Neurobiol. Dis. pmid:16242629
Jung KM et al. An amyloid β42-dependent deficit in anandamide mobilization is associated with cognitive dysfunction in Alzheimer's disease. 2012 Neurobiol. Aging pmid:21546126
Wise LE et al. Fatty acid amide hydrolase (FAAH) knockout mice exhibit enhanced acquisition of an aversive, but not of an appetitive, Barnes maze task. 2009 Neurobiol Learn Mem pmid:19524055
Munguba H et al. Pre-training anandamide infusion within the basolateral amygdala impairs plus-maze discriminative avoidance task in rats. 2011 Neurobiol Learn Mem pmid:21440651
De Oliveira Alvares L et al. Differential role of the hippocampal endocannabinoid system in the memory consolidation and retrieval mechanisms. 2008 Neurobiol Learn Mem pmid:18342551
Costanzi M et al. Effects of anandamide and morphine combinations on memory consolidation in cd1 mice: involvement of dopaminergic mechanisms. 2004 Neurobiol Learn Mem pmid:14990234
Costanzi M et al. Anandamide and memory in CD1 mice: effects of immobilization stress and of prior experience. 2003 Neurobiol Learn Mem pmid:12676519
Mechoulam R The promise of advances in the field of endocannabinoids. 2004 Feb-Apr Neuro Endocrinol. Lett. pmid:15159675
Fride E The endocannabinoid-CB receptor system: Importance for development and in pediatric disease. 2004 Feb-Apr Neuro Endocrinol. Lett. pmid:15159678
Russo EB Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? 2004 Feb-Apr Neuro Endocrinol. Lett. pmid:15159679
Malek N et al. Anandamide, Acting via CB2 Receptors, Alleviates LPS-Induced Neuroinflammation in Rat Primary Microglial Cultures. 2015 Neural Plast. pmid:26090232
Crozier Willi G et al. Lipids in neural function: modulation of behavior by oral administration of endocannabinoids found in foods. 2001 Nestle Nutr Workshop Ser Clin Perform Programme pmid:11510437
Barthó L et al. Nitric oxide is involved in the relaxant effect of capsaicin in the human sigmoid colon circular muscle. 2002 Naunyn Schmiedebergs Arch. Pharmacol. pmid:12382081
Holt S and Fowler CJ Anandamide metabolism by fatty acid amide hydrolase in intact C6 glioma cells. Increased sensitivity to inhibition by ibuprofen and flurbiprofen upon reduction of extra- but not intracellular pH. 2003 Naunyn Schmiedebergs Arch. Pharmacol. pmid:12644895
Schulte K et al. Cannabinoid CB1 receptor activation, pharmacological blockade, or genetic ablation affects the function of the muscarinic auto- and heteroreceptor. 2012 Naunyn Schmiedebergs Arch. Pharmacol. pmid:22215206
del Carmen García M et al. Hypotensive effect of anandamide through the activation of CB1 and VR1 spinal receptors in urethane-anesthetized rats. 2003 Naunyn Schmiedebergs Arch. Pharmacol. pmid:14504685
Baranowska-Kuczko M et al. Mechanisms of endothelium-dependent relaxation evoked by anandamide in isolated human pulmonary arteries. 2014 Naunyn Schmiedebergs Arch. Pharmacol. pmid:24682422
Molderings GJ et al. Presynaptic cannabinoid and imidazoline receptors in the human heart and their potential relationship. 1999 Naunyn Schmiedebergs Arch. Pharmacol. pmid:10494885
Akinshola BE et al. Anandamide inhibition of recombinant AMPA receptor subunits in Xenopus oocytes is increased by forskolin and 8-bromo-cyclic AMP. 1999 Naunyn Schmiedebergs Arch. Pharmacol. pmid:10543424
Fisar Z Inhibition of monoamine oxidase activity by cannabinoids. 2010 Naunyn Schmiedebergs Arch. Pharmacol. pmid:20401651
Malinowska B et al. Involvement of central beta2-adrenergic, NMDA and thromboxane A2 receptors in the pressor effect of anandamide in rats. 2010 Naunyn Schmiedebergs Arch. Pharmacol. pmid:20198363
Terranova JP et al. Inhibition of long-term potentiation in rat hippocampal slices by anandamide and WIN55212-2: reversal by SR141716 A, a selective antagonist of CB1 cannabinoid receptors. 1995 Naunyn Schmiedebergs Arch. Pharmacol. pmid:8751088
Zygmunt PM et al. Differential actions of anandamide, potassium ions and endothelium-derived hyperpolarizing factor in guinea-pig basilar artery. 2000 Naunyn Schmiedebergs Arch. Pharmacol. pmid:10832608
Ilayan E et al. Do cannabinoids exhibit a tyramine-like effect? 2013 Naunyn Schmiedebergs Arch. Pharmacol. pmid:23900610
Avelino A and Cruz F TRPV1 (vanilloid receptor) in the urinary tract: expression, function and clinical applications. 2006 Naunyn Schmiedebergs Arch. Pharmacol. pmid:16721555
Jergas B et al. O-2050 facilitates noradrenaline release and increases the CB1 receptor inverse agonistic effect of rimonabant in the guinea pig hippocampus. 2014 Naunyn Schmiedebergs Arch. Pharmacol. pmid:24853577
Steffens M et al. Quantitative measurement of depolarization-induced anandamide release in human and rat neocortex. 2003 Naunyn Schmiedebergs Arch. Pharmacol. pmid:14566450
Kracke GR et al. The cannabinoid receptor agonists, anandamide and WIN 55,212-2, do not directly affect mu opioid receptors expressed in Xenopus oocytes. 2007 Naunyn Schmiedebergs Arch. Pharmacol. pmid:17960365
Mechoulam R et al. Anandamide may mediate sleep induction. 1997 Nature pmid:9288961
Hohmann AG et al. An endocannabinoid mechanism for stress-induced analgesia. 2005 Nature pmid:15973410
Iversen L Pharmacology. Endogenous cannabinoids. 1994 Nature pmid:7990950
Calignano A et al. Control of pain initiation by endogenous cannabinoids. 1998 Nature pmid:9685157
Zygmunt PM et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. 1999 Nature pmid:10440374
Munro S et al. Molecular characterization of a peripheral receptor for cannabinoids. 1993 Nature pmid:7689702
Premkumar LS and Ahern GP Induction of vanilloid receptor channel activity by protein kinase C. 2000 Dec 21-28 Nature pmid:11140687
Davis JB et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. 2000 Nature pmid:10821274
Venance L et al. Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes. 1995 Nature pmid:7637807
Watanabe H et al. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. 2003 Nature pmid:12879072
Mechoulam R and Fride E Physiology. A hunger for cannabinoids. 2001 Nature pmid:11298428