Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Overweight D050177 11 associated lipids
Headache Disorders, Secondary D051271 1 associated lipids
Orthostatic Intolerance D054971 1 associated lipids
Vascular System Injuries D057772 2 associated lipids
Acute Pain D059787 3 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Ross RA et al. Pharmacological characterization of the anandamide cyclooxygenase metabolite: prostaglandin E2 ethanolamide. 2002 J. Pharmacol. Exp. Ther. pmid:12023517
Oz M et al. Additive effects of endogenous cannabinoid anandamide and ethanol on alpha7-nicotinic acetylcholine receptor-mediated responses in Xenopus Oocytes. 2005 J. Pharmacol. Exp. Ther. pmid:15687372
Kangas BD et al. Comparisons of Δ9-Tetrahydrocannabinol and Anandamide on a Battery of Cognition-Related Behavior in Nonhuman Primates. 2016 J. Pharmacol. Exp. Ther. pmid:26826191
Vanheel B and Van de Voorde J Regional differences in anandamide- and methanandamide-induced membrane potential changes in rat mesenteric arteries. 2001 J. Pharmacol. Exp. Ther. pmid:11160613
Aceto MD et al. Anandamide, an endogenous cannabinoid, has a very low physical dependence potential. 1998 J. Pharmacol. Exp. Ther. pmid:9808686
Esposito G et al. Opposing control of cannabinoid receptor stimulation on amyloid-beta-induced reactive gliosis: in vitro and in vivo evidence. 2007 J. Pharmacol. Exp. Ther. pmid:17545311
Gavva NR et al. AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. 2005 J. Pharmacol. Exp. Ther. pmid:15615864
Karanian DA et al. Endocannabinoid enhancement protects against kainic acid-induced seizures and associated brain damage. 2007 J. Pharmacol. Exp. Ther. pmid:17545313
Fulton D and Quilley J Evidence against anandamide as the hyperpolarizing factor mediating the nitric oxide-independent coronary vasodilator effect of bradykinin in the rat. 1998 J. Pharmacol. Exp. Ther. pmid:9732371
Welch SP et al. Differential blockade of the antinociceptive effects of centrally administered cannabinoids by SR141716A. 1998 J. Pharmacol. Exp. Ther. pmid:9732392
Kinsey SG et al. Blockade of endocannabinoid-degrading enzymes attenuates neuropathic pain. 2009 J. Pharmacol. Exp. Ther. pmid:19502530
Anikwue R et al. Decrease in efficacy and potency of nonsteroidal anti-inflammatory drugs by chronic delta(9)-tetrahydrocannabinol administration. 2002 J. Pharmacol. Exp. Ther. pmid:12235269
Rockwell CE and Kaminski NE A cyclooxygenase metabolite of anandamide causes inhibition of interleukin-2 secretion in murine splenocytes. 2004 J. Pharmacol. Exp. Ther. pmid:15284281
Solinas M et al. Nicotinic facilitation of delta9-tetrahydrocannabinol discrimination involves endogenous anandamide. 2007 J. Pharmacol. Exp. Ther. pmid:17351107
Caprioli A et al. The novel reversible fatty acid amide hydrolase inhibitor ST4070 increases endocannabinoid brain levels and counteracts neuropathic pain in different animal models. 2012 J. Pharmacol. Exp. Ther. pmid:22514334
Ritter JK et al. Production and actions of the anandamide metabolite prostamide E2 in the renal medulla. 2012 J. Pharmacol. Exp. Ther. pmid:22685343
Smith PB et al. The pharmacological activity of anandamide, a putative endogenous cannabinoid, in mice. 1994 J. Pharmacol. Exp. Ther. pmid:8035318
Akerman S et al. Cannabinoid (CB1) receptor activation inhibits trigeminovascular neurons. 2007 J. Pharmacol. Exp. Ther. pmid:17018694
Orliac ML et al. Potentiation of anandamide effects in mesenteric beds isolated from endotoxemic rats. 2003 J. Pharmacol. Exp. Ther. pmid:12490589
Bonhaus DW et al. Dual activation and inhibition of adenylyl cyclase by cannabinoid receptor agonists: evidence for agonist-specific trafficking of intracellular responses. 1998 J. Pharmacol. Exp. Ther. pmid:9864268
Varvel SA et al. Fatty acid amide hydrolase (-/-) mice exhibit an increased sensitivity to the disruptive effects of anandamide or oleamide in a working memory water maze task. 2006 J. Pharmacol. Exp. Ther. pmid:16352706
Showalter VM et al. Evaluation of binding in a transfected cell line expressing a peripheral cannabinoid receptor (CB2): identification of cannabinoid receptor subtype selective ligands. 1996 J. Pharmacol. Exp. Ther. pmid:8819477
Rösch S et al. R(+)-methanandamide and other cannabinoids induce the expression of cyclooxygenase-2 and matrix metalloproteinases in human nonpigmented ciliary epithelial cells. 2006 J. Pharmacol. Exp. Ther. pmid:16330497
Kraft B and Kress HG Indirect CB2 receptor and mediator-dependent stimulation of human whole-blood neutrophils by exogenous and endogenous cannabinoids. 2005 J. Pharmacol. Exp. Ther. pmid:16055676
Solinas M et al. The endogenous cannabinoid anandamide produces delta-9-tetrahydrocannabinol-like discriminative and neurochemical effects that are enhanced by inhibition of fatty acid amide hydrolase but not by inhibition of anandamide transport. 2007 J. Pharmacol. Exp. Ther. pmid:17210800
Martin BR et al. Cannabinoid properties of methylfluorophosphonate analogs. 2000 J. Pharmacol. Exp. Ther. pmid:10945879
Willoughby KA et al. The biodisposition and metabolism of anandamide in mice. 1997 J. Pharmacol. Exp. Ther. pmid:9223560
Griffin G et al. Cloning and pharmacological characterization of the rat CB(2) cannabinoid receptor. 2000 J. Pharmacol. Exp. Ther. pmid:10688601
Rakhshan F et al. Carrier-mediated uptake of the endogenous cannabinoid anandamide in RBL-2H3 cells. 2000 J. Pharmacol. Exp. Ther. pmid:10688610
Muthian S et al. Synthesis and characterization of a fluorescent substrate for the N-arachidonoylethanolamine (anandamide) transmembrane carrier. 2000 J. Pharmacol. Exp. Ther. pmid:10734181
Scherma M et al. Inhibition of anandamide hydrolysis by cyclohexyl carbamic acid 3'-carbamoyl-3-yl ester (URB597) reverses abuse-related behavioral and neurochemical effects of nicotine in rats. 2008 J. Pharmacol. Exp. Ther. pmid:18725543
Fowler CJ et al. Ibuprofen inhibits rat brain deamidation of anandamide at pharmacologically relevant concentrations. Mode of inhibition and structure-activity relationship. 1997 J. Pharmacol. Exp. Ther. pmid:9353392
Compton DR and Martin BR The effect of the enzyme inhibitor phenylmethylsulfonyl fluoride on the pharmacological effect of anandamide in the mouse model of cannabimimetic activity. 1997 J. Pharmacol. Exp. Ther. pmid:9399986
Chiba T et al. A synthetic cannabinoid, CP55940, inhibits lipopolysaccharide-induced cytokine mRNA expression in a cannabinoid receptor-independent mechanism in rat cerebellar granule cells. 2011 J. Pharm. Pharmacol. pmid:21492165
Hayase T et al. Protective effects of cannabinoid receptor agonists against cocaine and other convulsant-induced toxic behavioural symptoms. 2001 J. Pharm. Pharmacol. pmid:11732755
Di Marzo M et al. Synthesis, conformational analysis and CB1 binding affinity of hairpin-like anandamide pseudopeptide mimetics. 2006 J. Pept. Sci. pmid:16534762
Gómez R et al. Endogenous cannabinoid anandamide impairs cell growth and induces apoptosis in chondrocytes. 2014 J. Orthop. Res. pmid:24902823
Hutchins-Wiese HL et al. Hind limb suspension and long-chain omega-3 PUFA increase mRNA endocannabinoid system levels in skeletal muscle. 2012 J. Nutr. Biochem. pmid:22051448
Battista N et al. Abnormal anandamide metabolism in celiac disease. 2012 J. Nutr. Biochem. pmid:22209002
Hutchins HL et al. Eicosapentaenoic acid decreases expression of anandamide synthesis enzyme and cannabinoid receptor 2 in osteoblast-like cells. 2011 J. Nutr. Biochem. pmid:20951563
Mennella I et al. Food Liking Enhances the Plasma Response of 2-Arachidonoylglycerol and of Pancreatic Polypeptide upon Modified Sham Feeding in Humans. 2015 J. Nutr. pmid:26180248
Batetta B et al. Endocannabinoids may mediate the ability of (n-3) fatty acids to reduce ectopic fat and inflammatory mediators in obese Zucker rats. 2009 J. Nutr. pmid:19549757
Thomas EA et al. Fatty acid amide hydrolase, the degradative enzyme for anandamide and oleamide, has selective distribution in neurons within the rat central nervous system. 1997 J. Neurosci. Res. pmid:9452020
Bari M et al. Cholesterol-dependent modulation of type 1 cannabinoid receptors in nerve cells. 2005 J. Neurosci. Res. pmid:15920744
Molina-Holgado F et al. Role of CB1 and CB2 receptors in the inhibitory effects of cannabinoids on lipopolysaccharide-induced nitric oxide release in astrocyte cultures. 2002 J. Neurosci. Res. pmid:11891798
Arias-Carrión O et al. Biochemical modulation of the sleep-wake cycle: endogenous sleep-inducing factors. 2011 J. Neurosci. Res. pmid:21557294
Bajo M et al. Differential alteration of hippocampal excitatory synaptic transmission by cannabinoid ligands. 2009 J. Neurosci. Res. pmid:18816788
Shinjyo N et al. Impact of omega-6 polyunsaturated fatty acid supplementation and γ-aminobutyric acid on astrogliogenesis through the endocannabinoid system. 2013 J. Neurosci. Res. pmid:23633391
Bannerman P et al. Early migratory rat neural crest cells express functional gap junctions: evidence that neural crest cell survival requires gap junction function. 2000 J. Neurosci. Res. pmid:10972957
Ahern GP et al. Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. 2005 J. Neurosci. pmid:15917451
Tabatadze N et al. Sex Differences in Molecular Signaling at Inhibitory Synapses in the Hippocampus. 2015 J. Neurosci. pmid:26269634
Gómez R et al. A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. 2002 J. Neurosci. pmid:12417686
Gray JM et al. Corticotropin-releasing hormone drives anandamide hydrolysis in the amygdala to promote anxiety. 2015 J. Neurosci. pmid:25740517
Wang ZJ et al. Cannabinoid receptor-mediated regulation of neuronal activity and signaling in glomeruli of the main olfactory bulb. 2012 J. Neurosci. pmid:22723687
Xiong W et al. A common molecular basis for exogenous and endogenous cannabinoid potentiation of glycine receptors. 2012 J. Neurosci. pmid:22496565
Franklin A et al. Palmitoylethanolamide increases after focal cerebral ischemia and potentiates microglial cell motility. 2003 J. Neurosci. pmid:12944505
Shen Y et al. A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells. 2009 J. Neurosci. pmid:19439586
Derkinderen P et al. Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. 2003 J. Neurosci. pmid:12657697
Clement AB et al. Increased seizure susceptibility and proconvulsant activity of anandamide in mice lacking fatty acid amide hydrolase. 2003 J. Neurosci. pmid:12736361
Marinelli S et al. Presynaptic facilitation of glutamatergic synapses to dopaminergic neurons of the rat substantia nigra by endogenous stimulation of vanilloid receptors. 2003 J. Neurosci. pmid:12716921
Massa F et al. Alterations in the hippocampal endocannabinoid system in diet-induced obese mice. 2010 J. Neurosci. pmid:20445053
Tognetto M et al. Anandamide excites central terminals of dorsal root ganglion neurons via vanilloid receptor-1 activation. 2001 J. Neurosci. pmid:11160380
Cadas H et al. Biosynthesis of an endogenous cannabinoid precursor in neurons and its control by calcium and cAMP. 1996 J. Neurosci. pmid:8656287
van der Stelt M et al. Exogenous anandamide protects rat brain against acute neuronal injury in vivo. 2001 J. Neurosci. pmid:11698588
Beltramo M et al. Reversal of dopamine D(2) receptor responses by an anandamide transport inhibitor. 2000 J. Neurosci. pmid:10777802
Lerner TN et al. Endocannabinoid signaling mediates psychomotor activation by adenosine A2A antagonists. 2010 J. Neurosci. pmid:20147543
Garami A et al. Thermoregulatory phenotype of the Trpv1 knockout mouse: thermoeffector dysbalance with hyperkinesis. 2011 J. Neurosci. pmid:21289181
Justinova Z et al. The endogenous cannabinoid anandamide and its synthetic analog R(+)-methanandamide are intravenously self-administered by squirrel monkeys. 2005 J. Neurosci. pmid:15944392
Subbanna S et al. Anandamide-CB1 receptor signaling contributes to postnatal ethanol-induced neonatal neurodegeneration, adult synaptic, and memory deficits. 2013 J. Neurosci. pmid:23575834
Dinis P et al. Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis. 2004 J. Neurosci. pmid:15601931
Akerman S et al. Endocannabinoids in the brainstem modulate dural trigeminovascular nociceptive traffic via CB1 and "triptan" receptors: implications in migraine. 2013 J. Neurosci. pmid:24027286
Ade KK and Lovinger DM Anandamide regulates postnatal development of long-term synaptic plasticity in the rat dorsolateral striatum. 2007 J. Neurosci. pmid:17329438
Khlaifia A et al. Anandamide, cannabinoid type 1 receptor, and NMDA receptor activation mediate non-Hebbian presynaptically expressed long-term depression at the first central synapse for visceral afferent fibers. 2013 J. Neurosci. pmid:23904599
Kim D and Thayer SA Cannabinoids inhibit the formation of new synapses between hippocampal neurons in culture. 2001 J. Neurosci. pmid:11319244
Khasabova IA et al. A decrease in anandamide signaling contributes to the maintenance of cutaneous mechanical hyperalgesia in a model of bone cancer pain. 2008 J. Neurosci. pmid:18971457
Veldhuis WB et al. Neuroprotection by the endogenous cannabinoid anandamide and arvanil against in vivo excitotoxicity in the rat: role of vanilloid receptors and lipoxygenases. 2003 J. Neurosci. pmid:12764100
Cadas H et al. Occurrence and biosynthesis of endogenous cannabinoid precursor, N-arachidonoyl phosphatidylethanolamine, in rat brain. 1997 J. Neurosci. pmid:9006968
Khasabova IA et al. Cannabinoid type-1 receptor reduces pain and neurotoxicity produced by chemotherapy. 2012 J. Neurosci. pmid:22593077
Qin N et al. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. 2008 J. Neurosci. pmid:18550765
Chemin J et al. Neuronal T-type alpha 1H calcium channels induce neuritogenesis and expression of high-voltage-activated calcium channels in the NG108-15 cell line. 2002 J. Neurosci. pmid:12177183
Gubellini P et al. Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. 2002 J. Neurosci. pmid:12177188
Kim SR et al. Transient receptor potential vanilloid subtype 1 mediates cell death of mesencephalic dopaminergic neurons in vivo and in vitro. 2005 J. Neurosci. pmid:15659603
Ali AB Presynaptic Inhibition of GABAA receptor-mediated unitary IPSPs by cannabinoid receptors at synapses between CCK-positive interneurons in rat hippocampus. 2007 J. Neurophysiol. pmid:17567776
Fischbach T et al. Effects of anandamide and noxious heat on intracellular calcium concentration in nociceptive drg neurons of rats. 2007 J. Neurophysiol. pmid:17581853
Uhelski ML et al. Inhibition of anandamide hydrolysis attenuates nociceptor sensitization in a murine model of chemotherapy-induced peripheral neuropathy. 2015 J. Neurophysiol. pmid:25505113
Fan P Cannabinoid agonists inhibit the activation of 5-HT3 receptors in rat nodose ganglion neurons. 1995 J. Neurophysiol. pmid:7760148
Fisyunov A et al. Cannabinoids modulate the P-type high-voltage-activated calcium currents in purkinje neurons. 2006 J. Neurophysiol. pmid:16738209
De-May CL and Ali AB Cell type-specific regulation of inhibition via cannabinoid type 1 receptors in rat neocortex. 2013 J. Neurophysiol. pmid:23054605
Morisset V and Urban L Cannabinoid-induced presynaptic inhibition of glutamatergic EPSCs in substantia gelatinosa neurons of the rat spinal cord. 2001 J. Neurophysiol. pmid:11431486
Twitchell W et al. Cannabinoids inhibit N- and P/Q-type calcium channels in cultured rat hippocampal neurons. 1997 J. Neurophysiol. pmid:9242259
Contassot E et al. Arachidonylethanolamide induces apoptosis of human glioma cells through vanilloid receptor-1. 2004 J. Neuropathol. Exp. Neurol. pmid:15453094
Jean-Gilles L et al. Plasma endocannabinoid levels in multiple sclerosis. 2009 J. Neurol. Sci. pmid:19695579
Di Filippo M et al. Abnormalities in the cerebrospinal fluid levels of endocannabinoids in multiple sclerosis. 2008 J. Neurol. Neurosurg. Psychiatr. pmid:18535023
Stefano GB Autoimmunovascular regulation: morphine and anandamide and ancondamide stimulated nitric oxide release. 1998 J. Neuroimmunol. pmid:9610675
Eisenstein TK et al. Anandamide and Delta9-tetrahydrocannabinol directly inhibit cells of the immune system via CB2 receptors. 2007 J. Neuroimmunol. pmid:17640739
Schwarz H et al. Anadamide, an endogenous cannabinoid receptor agonist inhibits lymphocyte proliferation and induces apoptosis. 1994 J. Neuroimmunol. pmid:7962480
De Laurentiis A et al. The hypothalamic endocannabinoid system participates in the secretion of oxytocin and tumor necrosis factor-alpha induced by lipopolysaccharide. 2010 J. Neuroimmunol. pmid:20207018
Hollis JH et al. The endocannabinoid arachidonylethanolamide attenuates aspects of lipopolysaccharide-induced changes in energy intake, energy expenditure and hypothalamic Fos expression. 2011 J. Neuroimmunol. pmid:21262543
Malfitano AM et al. Arvanil inhibits T lymphocyte activation and ameliorates autoimmune encephalomyelitis. 2006 J. Neuroimmunol. pmid:16239036
Bisogno T Endogenous cannabinoids: structure and metabolism. 2008 J. Neuroendocrinol. pmid:18426492