Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Wilkerson JL et al. The endocannabinoid hydrolysis inhibitor SA-57: Intrinsic antinociceptive effects, augmented morphine-induced antinociception, and attenuated heroin seeking behavior in mice. 2017 Neuropharmacology pmid:27890602
Zelber-Sagi S et al. Serum levels of endocannabinoids are independently associated with nonalcoholic fatty liver disease. 2017 Obesity (Silver Spring) pmid:27863097
pmid:27861894
pmid:27856203
Saravia R et al. CB Cannabinoid Receptors Mediate Cognitive Deficits and Structural Plasticity Changes During Nicotine Withdrawal. 2017 Biol. Psychiatry pmid:27737762
pmid:27734750
Chiurchiù V et al. Anandamide Suppresses Proinflammatory T Cell Responses In Vitro through Type-1 Cannabinoid Receptor-Mediated mTOR Inhibition in Human Keratinocytes. 2016 J. Immunol. pmid:27694494
Kodani SD et al. Parabens inhibit fatty acid amide hydrolase: A potential role in paraben-enhanced 3T3-L1 adipocyte differentiation. 2016 Toxicol. Lett. pmid:27659731
pmid:27633407
pmid:27616551
pmid:27595886
Kerr DM et al. Pharmacological inhibition of fatty acid amide hydrolase attenuates social behavioural deficits in male rats prenatally exposed to valproic acid. 2016 Pharmacol. Res. pmid:27592249
Almada M et al. The endocannabinoid anandamide impairs in vitro decidualization of human cells. 2016 Reproduction pmid:27568210
Scholl A et al. Inhibition of interleukin-1β-induced endothelial tissue factor expression by the synthetic cannabinoid WIN 55,212-2. 2016 Oncotarget pmid:27556861
Morena M et al. Emotional arousal state influences the ability of amygdalar endocannabinoid signaling to modulate anxiety. 2016 Neuropharmacology pmid:27553121
pmid:27544303
pmid:27473037
Doenni VM et al. Deficient adolescent social behavior following early-life inflammation is ameliorated by augmentation of anandamide signaling. 2016 Brain Behav. Immun. pmid:27453335
Veeraraghavan P et al. A study of cannabinoid-1 receptors during the early phase of excitotoxic damage to rat spinal locomotor networks in vitro. 2016 Neuroscience pmid:27450568
Wiley JL et al. Just add water: cannabinoid discrimination in a water T-maze with FAAH(-/-) and FAAH(+/+) mice. 2016 Behav Pharmacol pmid:27385208
pmid:27373843
Malek N et al. The multiplicity of spinal AA-5-HT anti-nociceptive action in a rat model of neuropathic pain. 2016 Pharmacol. Res. pmid:27326920
pmid:27318096
Patel RR et al. Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol. 2016 Brain pmid:27267376
pmid:27256398
van Zadelhoff G and van der Stelt M Oxygenation of Anandamide by Lipoxygenases. 2016 Methods Mol. Biol. pmid:27245907
Kudalkar SN et al. Assay of Endocannabinoid Oxidation by Cyclooxygenase-2. 2016 Methods Mol. Biol. pmid:27245906
pmid:27245899
Pastuhov SI et al. Endocannabinoid signaling regulates regenerative axon navigation in Caenorhabditis elegans via the GPCRs NPR-19 and NPR-32. 2016 Genes Cells pmid:27193416
Li G et al. Protective Action of Anandamide and Its COX-2 Metabolite against l-Homocysteine-Induced NLRP3 Inflammasome Activation and Injury in Podocytes. 2016 J. Pharmacol. Exp. Ther. pmid:27189966
Dux M et al. Endovanilloids are potential activators of the trigeminovascular nocisensor complex. 2016 J Headache Pain pmid:27189587
Martin GG et al. FABP-1 gene ablation impacts brain endocannabinoid system in male mice. 2016 J. Neurochem. pmid:27167970
Grambow E et al. Differential effects of endogenous, phyto and synthetic cannabinoids on thrombogenesis and platelet activity. 2016 Biofactors pmid:27151562
pmid:27100705
Bruijnzeel AW et al. Behavioral Characterization of the Effects of Cannabis Smoke and Anandamide in Rats. 2016 PLoS ONE pmid:27065006
pmid:27062913
Martella A et al. Bisphenol A Induces Fatty Liver by an Endocannabinoid-Mediated Positive Feedback Loop. 2016 Endocrinology pmid:27014939
Walker VJ et al. Metabolism of Anandamide by Human Cytochrome P450 2J2 in the Reconstituted System and Human Intestinal Microsomes. 2016 J. Pharmacol. Exp. Ther. pmid:27000802
pmid:26976670
Limebeer CL et al. Elevation of 2-AG by monoacylglycerol lipase inhibition in the visceral insular cortex interferes with anticipatory nausea in a rat model. 2016 Behav. Neurosci. pmid:26974857
pmid:26965218
Iannotti FA et al. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders. 2016 Prog. Lipid Res. pmid:26965148
pmid:26963536
Leishman E et al. Lipidomics profile of a NAPE-PLD KO mouse provides evidence of a broader role of this enzyme in lipid metabolism in the brain. 2016 Biochim. Biophys. Acta pmid:26956082
pmid:26947140
Almada M et al. Anandamide interferes with human endometrial stromal-derived cell differentiation: An effect dependent on inhibition of cyclooxygenase-2 expression and prostaglandin E2 release. 2016 Biofactors pmid:26945481
Demers CH et al. Interactions Between Anandamide and Corticotropin-Releasing Factor Signaling Modulate Human Amygdala Function and Risk for Anxiety Disorders: An Imaging Genetics Strategy for Modeling Molecular Interactions. 2016 Biol. Psychiatry pmid:26923505
Wang X et al. Circulating Endocannabinoids and Insulin Resistance in Patients with Obstructive Sleep Apnea. 2016 Biomed Res Int pmid:26904688
Sun X et al. Sustained Endocannabinoid Signaling Compromises Decidual Function and Promotes Inflammation-induced Preterm Birth. 2016 J. Biol. Chem. pmid:26900150
Jacome-Sosa M et al. Vaccenic acid suppresses intestinal inflammation by increasing anandamide and related N-acylethanolamines in the JCR:LA-cp rat. 2016 J. Lipid Res. pmid:26891736