Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Alzheimer Disease D000544 76 associated lipids
Anorexia D000855 8 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Ataxia D001259 20 associated lipids
Urinary Bladder Diseases D001745 4 associated lipids
Body Weight D001835 333 associated lipids
Bradycardia D001919 13 associated lipids
Brain Concussion D001924 5 associated lipids
Brain Damage, Chronic D001925 6 associated lipids
Brain Edema D001929 20 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Karbarz MJ et al. Biochemical and biological properties of 4-(3-phenyl-[1,2,4] thiadiazol-5-yl)-piperazine-1-carboxylic acid phenylamide, a mechanism-based inhibitor of fatty acid amide hydrolase. 2009 Anesth. Analg. pmid:19095868
Petrovszki Z et al. The effects of peptide and lipid endocannabinoids on arthritic pain at the spinal level. 2012 Anesth. Analg. pmid:22451592
Romero TR et al. CB1 and CB2 cannabinoid receptor agonists induce peripheral antinociception by activation of the endogenous noradrenergic system. 2013 Anesth. Analg. pmid:23302980
Okura D et al. The endocannabinoid anandamide inhibits voltage-gated sodium channels Nav1.2, Nav1.6, Nav1.7, and Nav1.8 in Xenopus oocytes. 2014 Anesth. Analg. pmid:24557103
Farquhar-Smith WP and Rice AS A novel neuroimmune mechanism in cannabinoid-mediated attenuation of nerve growth factor-induced hyperalgesia. 2003 Anesthesiology pmid:14639155
Farquhar-Smith WP and Rice AS Administration of endocannabinoids prevents a referred hyperalgesia associated with inflammation of the urinary bladder. 2001 Anesthesiology pmid:11374613
Schelling G et al. Effects of general anesthesia on anandamide blood levels in humans. 2006 Anesthesiology pmid:16436846
Möhle R et al. Transendothelial migration of hematopoietic progenitor cells. Role of chemotactic factors. 2001 Ann. N. Y. Acad. Sci. pmid:11458515
Pisani A et al. High endogenous cannabinoid levels in the cerebrospinal fluid of untreated Parkinson's disease patients. 2005 Ann. Neurol. pmid:15852389
Chiurchiù V et al. Distinct modulation of human myeloid and plasmacytoid dendritic cells by anandamide in multiple sclerosis. 2013 Ann. Neurol. pmid:23447381
Katona I and Freund TF Multiple functions of endocannabinoid signaling in the brain. 2012 Annu. Rev. Neurosci. pmid:22524785
Linsalata M et al. Effects of anandamide on polyamine levels and cell growth in human colon cancer cells. 2010 Anticancer Res. pmid:20682986
Lissoni P et al. The endocannabinoid anandamide neither impairs in vitro T-cell function nor induces regulatory T-cell generation. 2008 Nov-Dec Anticancer Res. pmid:19189659
Dey R et al. Endocannabinoids inhibit the growth of free-living amoebae. 2010 Antimicrob. Agents Chemother. pmid:20479202
Simpson CD et al. A genome wide shRNA screen identifies α/β hydrolase domain containing 4 (ABHD4) as a novel regulator of anoikis resistance. 2012 Apoptosis pmid:22488300
Fonseca BM et al. The endocannabinoid anandamide induces apoptosis of rat decidual cells through a mechanism involving ceramide synthesis and p38 MAPK activation. 2013 Apoptosis pmid:24048885
Pinar-Sueiro S et al. [Cannabinoid applications in glaucoma]. 2011 Arch Soc Esp Oftalmol pmid:21414525
Kondo S et al. Accumulation of various N-acylethanolamines including N-arachidonoylethanolamine (anandamide) in cadmium chloride-administered rat testis. 1998 Arch. Biochem. Biophys. pmid:9637740
Fowler CJ et al. Inhibition of anandamide hydrolysis by the enantiomers of ibuprofen, ketorolac, and flurbiprofen. 1999 Arch. Biochem. Biophys. pmid:9989926
Maccarrone M et al. Lipopolysaccharide downregulates fatty acid amide hydrolase expression and increases anandamide levels in human peripheral lymphocytes. 2001 Arch. Biochem. Biophys. pmid:11556820
Oz M et al. Effects of saturated long-chain N-acylethanolamines on voltage-dependent Ca2+ fluxes in rabbit T-tubule membranes. 2005 Arch. Biochem. Biophys. pmid:15639235
Bisogno T et al. Biosynthesis and inactivation of N-arachidonoylethanolamine (anandamide) and N-docosahexaenoylethanolamine in bovine retina. 1999 Arch. Biochem. Biophys. pmid:10577359
D'Souza DC and Kosten TR Cannabinoid antagonists: a treatment in search of an illness. 2001 Arch. Gen. Psychiatry pmid:11296092
Fernandez-Solari J et al. Participation of the endocannabinoid system in lipopolysaccharide-induced inhibition of salivary secretion. 2010 Arch. Oral Biol. pmid:20542488
Jonsson KO et al. AM404 and VDM 11 non-specifically inhibit C6 glioma cell proliferation at concentrations used to block the cellular accumulation of the endocannabinoid anandamide. 2003 Arch. Toxicol. pmid:12698235
Andersson M et al. Neurotoxicity of glutamate in chick telencephalon neurons: reduction of toxicity by preincubation with carbachol, but not by the endogenous fatty acid amides anandamide and palmitoylethanolamide. 2000 Arch. Toxicol. pmid:10877002
Gustafsson SB et al. Effects of cannabinoids and related fatty acids upon the viability of P19 embryonal carcinoma cells. 2013 Arch. Toxicol. pmid:23552853
Lenglet S et al. Fatty acid amide hydrolase deficiency enhances intraplaque neutrophil recruitment in atherosclerotic mice. 2013 Arterioscler. Thromb. Vasc. Biol. pmid:23241405
Richardson D et al. Characterisation of the cannabinoid receptor system in synovial tissue and fluid in patients with osteoarthritis and rheumatoid arthritis. 2008 Arthritis Res. Ther. pmid:18416822
Lowin T et al. Cortisol-mediated adhesion of synovial fibroblasts is dependent on the degradation of anandamide and activation of the endocannabinoid system. 2012 Arthritis Rheum. pmid:22933357
Sagar DR et al. Tonic modulation of spinal hyperexcitability by the endocannabinoid receptor system in a rat model of osteoarthritis pain. 2010 Arthritis Rheum. pmid:20722027
Sakamoto Y et al. Effectiveness of continuous hemodiafiltration using a polymethylmethacrylate membrane hemofilter after polymyxin B-immobilized fiber column therapy of septic shock. 2008 Jan-Feb ASAIO J. pmid:18204329
Sakamoto Y et al. Clinical responses and improvement of some laboratory parameters following polymyxin B-immobilized fiber treatment in septic shock. 2007 Sep-Oct ASAIO J. pmid:17885340
Marichal-Cancino BA et al. Role of pre-junctional CB1, but not CB2 , TRPV1 or GPR55 receptors in anandamide-induced inhibition of the vasodepressor sensory CGRPergic outflow in pithed rats. 2014 Basic Clin. Pharmacol. Toxicol. pmid:24118786
Dékány A et al. The contractile effect of anandamide in the guinea-pig small intestine is mediated by prostanoids but not TRPV1 receptors or capsaicin-sensitive nerves. 2013 Basic Clin. Pharmacol. Toxicol. pmid:23216932
Yeh JH et al. Effect of anandamide on cytosolic Ca(2+) levels and proliferation in canine renal tubular cells. 2006 Basic Clin. Pharmacol. Toxicol. pmid:16623868
Hayase T et al. Persistent anxiogenic effects of a single or repeated doses of cocaine and methamphetamine: interactions with endogenous cannabinoid receptor ligands. 2005 Behav Pharmacol pmid:16148444
Gamage TF et al. In-vivo pharmacological evaluation of the CB1-receptor allosteric modulator Org-27569. 2014 Behav Pharmacol pmid:24603340
Kwilasz AJ et al. Effects of the fatty acid amide hydrolase inhibitor URB597 on pain-stimulated and pain-depressed behavior in rats. 2014 Behav Pharmacol pmid:24583930
Castellano C et al. The effects of anandamide on memory consolidation in mice involve both D1 and D2 dopamine receptors. 1997 Behav Pharmacol pmid:9832956
Castellano C et al. Strain-dependent effects of anandamide on memory consolidation in mice are antagonized by naltrexone. 1999 Behav Pharmacol pmid:10780251
Wiley JL et al. Just add water: cannabinoid discrimination in a water T-maze with FAAH(-/-) and FAAH(+/+) mice. 2016 Behav Pharmacol pmid:27385208
Qin M et al. Endocannabinoid-mediated improvement on a test of aversive memory in a mouse model of fragile X syndrome. 2015 Behav. Brain Res. pmid:25979787
Pedroza-Llinás R et al. CB1 receptor activation in the nucleus accumbens core impairs contextual fear learning. 2013 Behav. Brain Res. pmid:23018128
Umathe SN et al. Involvement of endocannabinoids in antidepressant and anti-compulsive effect of fluoxetine in mice. 2011 Behav. Brain Res. pmid:21549765
Thiemann G et al. The role of the CB1 cannabinoid receptor and its endogenous ligands, anandamide and 2-arachidonoylglycerol, in amphetamine-induced behavioural sensitization. 2008 Behav. Brain Res. pmid:17988751
Limebeer CL et al. Elevation of 2-AG by monoacylglycerol lipase inhibition in the visceral insular cortex interferes with anticipatory nausea in a rat model. 2016 Behav. Neurosci. pmid:26974857
De Petrocellis L and Di Marzo V An introduction to the endocannabinoid system: from the early to the latest concepts. 2009 Best Pract. Res. Clin. Endocrinol. Metab. pmid:19285257
Borrelli F and Izzo AA Role of acylethanolamides in the gastrointestinal tract with special reference to food intake and energy balance. 2009 Best Pract. Res. Clin. Endocrinol. Metab. pmid:19285259
Bermúdez-Silva FJ et al. The role of the pancreatic endocannabinoid system in glucose metabolism. 2009 Best Pract. Res. Clin. Endocrinol. Metab. pmid:19285263
Jones BR et al. Surrogate matrix and surrogate analyte approaches for definitive quantitation of endogenous biomolecules. 2012 Bioanalysis pmid:23088461
Bisogno T et al. The sleep inducing factor oleamide is produced by mouse neuroblastoma cells. 1997 Biochem. Biophys. Res. Commun. pmid:9344854
Bornheim LM et al. The effect of cannabidiol on mouse hepatic microsomal cytochrome P450-dependent anandamide metabolism. 1993 Biochem. Biophys. Res. Commun. pmid:8267610
Catanzaro G et al. Anandamide increases swelling and reduces calcium sensitivity of mitochondria. 2009 Biochem. Biophys. Res. Commun. pmid:19679102
Bisogno T et al. Arachidonoylserotonin and other novel inhibitors of fatty acid amide hydrolase. 1998 Biochem. Biophys. Res. Commun. pmid:9703957
Bisogno T et al. Brain regional distribution of endocannabinoids: implications for their biosynthesis and biological function. 1999 Biochem. Biophys. Res. Commun. pmid:10079192
Soltys J et al. Regulation of neural progenitor cell fate by anandamide. 2010 Biochem. Biophys. Res. Commun. pmid:20691161
Sugiura T et al. Enzymatic synthesis of anandamide, an endogenous cannabinoid receptor ligand, through N-acylphosphatidylethanolamine pathway in testis: involvement of Ca(2+)-dependent transacylase and phosphodiesterase activities. 1996 Biochem. Biophys. Res. Commun. pmid:8573114
Kozono S et al. Involvement of the endocannabinoid system in periodontal healing. 2010 Biochem. Biophys. Res. Commun. pmid:20233580
Sugiura T et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. 1995 Biochem. Biophys. Res. Commun. pmid:7575630
Chen J et al. Finding of endocannabinoids in human eye tissues: implications for glaucoma. 2005 Biochem. Biophys. Res. Commun. pmid:15823551
Maccarrone M et al. Anandamide and 2-arachidonoylglycerol inhibit fatty acid amide hydrolase by activating the lipoxygenase pathway of the arachidonate cascade. 2000 Biochem. Biophys. Res. Commun. pmid:11095952
Di Marzo V et al. Potential biosynthetic connections between the two cannabimimetic eicosanoids, anandamide and 2-arachidonoyl-glycerol, in mouse neuroblastoma cells. 1996 Biochem. Biophys. Res. Commun. pmid:8858137
Sugiura T et al. 2-Arachidonoylglycerol, a putative endogenous cannabinoid receptor ligand, induces rapid, transient elevation of intracellular free Ca2+ in neuroblastoma x glioma hybrid NG108-15 cells. 1996 Biochem. Biophys. Res. Commun. pmid:8954083
Kurahashi Y et al. Reversible hydrolysis and synthesis of anandamide demonstrated by recombinant rat fatty-acid amide hydrolase. 1997 Biochem. Biophys. Res. Commun. pmid:9299394
Wenger T et al. Arachidonyl ethanolamide (anandamide) activates the parvocellular part of hypothalamic paraventricular nucleus. 1997 Biochem. Biophys. Res. Commun. pmid:9299434
De Petrocellis L et al. Novel inhibitors of brain, neuronal, and basophilic anandamide amidohydrolase. 1997 Biochem. Biophys. Res. Commun. pmid:9070224
Deutsch DG et al. Fatty acid sulfonyl fluorides inhibit anandamide metabolism and bind to the cannabinoid receptor. 1997 Biochem. Biophys. Res. Commun. pmid:9070252
Melck D et al. Unsaturated long-chain N-acyl-vanillyl-amides (N-AVAMs): vanilloid receptor ligands that inhibit anandamide-facilitated transport and bind to CB1 cannabinoid receptors. 1999 Biochem. Biophys. Res. Commun. pmid:10448105
Di Marzo V et al. Highly selective CB(1) cannabinoid receptor ligands and novel CB(1)/VR(1) vanilloid receptor "hybrid" ligands. 2001 Biochem. Biophys. Res. Commun. pmid:11181068
van Zadelhoff G et al. With anandamide as substrate plant 5-lipoxygenases behave like 11-lipoxygenases. 1998 Biochem. Biophys. Res. Commun. pmid:9675081
Randall MD et al. An endogenous cannabinoid as an endothelium-derived vasorelaxant. 1996 Biochem. Biophys. Res. Commun. pmid:8954092
González S et al. Sex steroid influence on cannabinoid CB(1) receptor mRNA and endocannabinoid levels in the anterior pituitary gland. 2000 Biochem. Biophys. Res. Commun. pmid:10733937
Wenger T et al. The central cannabinoid receptor inactivation suppresses endocrine reproductive functions. 2001 Biochem. Biophys. Res. Commun. pmid:11394887
Athanasiou A et al. Cannabinoid receptor agonists are mitochondrial inhibitors: a unified hypothesis of how cannabinoids modulate mitochondrial function and induce cell death. 2007 Biochem. Biophys. Res. Commun. pmid:17931597
Ferrer B et al. Regulation of brain anandamide by acute administration of ethanol. 2007 Biochem. J. pmid:17302558
Wisnoskey BJ et al. Activation of vanilloid receptor type I in the endoplasmic reticulum fails to activate store-operated Ca2+ entry. 2003 Biochem. J. pmid:12608892
Di Marzo V et al. Biosynthesis of anandamide and related acylethanolamides in mouse J774 macrophages and N18 neuroblastoma cells. 1996 Biochem. J. pmid:8670178
Gómez del Pulgar T et al. The CB1 cannabinoid receptor is coupled to the activation of protein kinase B/Akt. 2000 Biochem. J. pmid:10749665
Bisogno T et al. N-acyl-dopamines: novel synthetic CB(1) cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo. 2000 Biochem. J. pmid:11042139
Sun YX et al. Biosynthesis of anandamide and N-palmitoylethanolamine by sequential actions of phospholipase A2 and lysophospholipase D. 2004 Biochem. J. pmid:14998370
Ligresti A et al. Further evidence for the existence of a specific process for the membrane transport of anandamide. 2004 Biochem. J. pmid:14969584
Bisogno T et al. Biosynthesis, release and degradation of the novel endogenous cannabimimetic metabolite 2-arachidonoylglycerol in mouse neuroblastoma cells. 1997 Biochem. J. pmid:9065792
Di Marzo V et al. Palmitoylethanolamide inhibits the expression of fatty acid amide hydrolase and enhances the anti-proliferative effect of anandamide in human breast cancer cells. 2001 Biochem. J. pmid:11485574
Di Marzo V et al. The novel endogenous cannabinoid 2-arachidonoylglycerol is inactivated by neuronal- and basophil-like cells: connections with anandamide. 1998 Biochem. J. pmid:9512456
Maccarrone M et al. Binding, degradation and apoptotic activity of stearoylethanolamide in rat C6 glioma cells. 2002 Biochem. J. pmid:12010121
Correa F et al. Anandamide inhibits IL-12p40 production by acting on the promoter repressor element GA-12: possible involvement of the COX-2 metabolite prostamide E(2). 2008 Biochem. J. pmid:17961121
Mbvundula EC et al. Effects of cannabinoids on nitric oxide production by chondrocytes and proteoglycan degradation in cartilage. 2005 Biochem. Pharmacol. pmid:15670582
Fowler CJ and Tiger G Cyclooxygenation of the arachidonoyl side chain of 1-arachidonoylglycerol and related compounds block their ability to prevent anandamide and 2-oleoylglycerol metabolism by rat brain in vitro. 2005 Biochem. Pharmacol. pmid:15794945
Shivachar AC Cannabinoids inhibit sodium-dependent, high-affinity excitatory amino acid transport in cultured rat cortical astrocytes. 2007 Biochem. Pharmacol. pmid:17445778
De Bank PA et al. A spectrophotometric assay for fatty acid amide hydrolase suitable for high-throughput screening. 2005 Biochem. Pharmacol. pmid:15794939
Burstein SH et al. Relationships between eicosanoids and cannabinoids. Are eicosanoids cannabimimetic agents?. 1995 Biochem. Pharmacol. pmid:8615850
Shivachar AC et al. Anandamide- and delta9-tetrahydrocannabinol-evoked arachidonic acid mobilization and blockade by SR141716A [N-(Piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4 -methyl-1H-pyrazole-3-carboximide hydrochloride]. 1996 Biochem. Pharmacol. pmid:8615904
Mechoulam R et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. 1995 Biochem. Pharmacol. pmid:7605349
Burstein SH and Hunter SA Stimulation of anandamide biosynthesis in N-18TG2 neuroblastoma cells by delta 9-tetrahydrocannabinol (THC). 1995 Biochem. Pharmacol. pmid:7702643
Yang Z et al. Subunit-specific modulation of glycine receptors by cannabinoids and N-arachidonyl-glycine. 2008 Biochem. Pharmacol. pmid:18755158
Correa F et al. A role for CB2 receptors in anandamide signalling pathways involved in the regulation of IL-12 and IL-23 in microglial cells. 2009 Biochem. Pharmacol. pmid:18848818
Thumser AE et al. A fluorescence displacement assay for the measurement of arachidonoyl ethanolamide (anandamide) and oleoyl amide (octadecenoamide) hydrolysis. 1997 Biochem. Pharmacol. pmid:9065749
Tiger G et al. Pharmacological properties of rat brain fatty acid amidohydrolase in different subcellular fractions using palmitoylethanolamide as substrate. 2000 Biochem. Pharmacol. pmid:10677581
Lanzafame AA et al. Effects of anandamide on the binding and signaling properties of M1 muscarinic acetylcholine receptors. 2004 Biochem. Pharmacol. pmid:15498511