Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Stomach Ulcer D013276 75 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Breast Neoplasms D001943 24 associated lipids
Neoplasms D009369 13 associated lipids
Pain D010146 64 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Lenglet S et al. Fatty acid amide hydrolase deficiency enhances intraplaque neutrophil recruitment in atherosclerotic mice. 2013 Arterioscler. Thromb. Vasc. Biol. pmid:23241405
Adinolfi B et al. Anticancer activity of anandamide in human cutaneous melanoma cells. 2013 Eur. J. Pharmacol. pmid:24041928
Feuerecker M et al. Effect of an acute consumption of a moderate amount of ethanol on plasma endocannabinoid levels in humans. 2012 May-Jun Alcohol Alcohol. pmid:22278319
Heyman E et al. Intense exercise increases circulating endocannabinoid and BDNF levels in humans--possible implications for reward and depression. 2012 Psychoneuroendocrinology pmid:22029953
Izumi Y and Zorumski CF NMDA receptors, mGluR5, and endocannabinoids are involved in a cascade leading to hippocampal long-term depression. 2012 Neuropsychopharmacology pmid:21993209
Malinowska B et al. Triphasic blood pressure responses to cannabinoids: do we understand the mechanism? 2012 Br. J. Pharmacol. pmid:22022923
Jarzimski C et al. Changes of blood endocannabinoids during anaesthesia: a special case for fatty acid amide hydrolase inhibition by propofol? 2012 Br J Clin Pharmacol pmid:22242687
Umathe SN et al. Endocannabinoid analogues exacerbate marble-burying behavior in mice via TRPV1 receptor. 2012 Neuropharmacology pmid:22248639
Newberry EP et al. Decreased body weight and hepatic steatosis with altered fatty acid ethanolamide metabolism in aged L-Fabp -/- mice. 2012 J. Lipid Res. pmid:22327204
Zhang X et al. Agonist-dependent potentiation of vanilloid receptor transient receptor potential vanilloid type 1 function by stilbene derivatives. 2012 Mol. Pharmacol. pmid:22328719
Rajesh M et al. Cannabinoid 1 receptor promotes cardiac dysfunction, oxidative stress, inflammation, and fibrosis in diabetic cardiomyopathy. 2012 Diabetes pmid:22315315
Shi RZ et al. Decreased anandamide transporter activity and calcitonin gene-related peptide production in spontaneously hypertensive rats: role of angiotensin II. 2012 Eur. J. Pharmacol. pmid:22318155
Battista N et al. The role of endocannabinoids in gonadal function and fertility along the evolutionary axis. 2012 Mol. Cell. Endocrinol. pmid:22305972
Marsicano G and Chaouloff F Moving bliss: a new anandamide transporter. 2012 Nat. Neurosci. pmid:22193249
Battista N et al. Abnormal anandamide metabolism in celiac disease. 2012 J. Nutr. Biochem. pmid:22209002
Schulte K et al. Cannabinoid CB1 receptor activation, pharmacological blockade, or genetic ablation affects the function of the muscarinic auto- and heteroreceptor. 2012 Naunyn Schmiedebergs Arch. Pharmacol. pmid:22215206
Wu X et al. Alteration of endocannabinoid system in human gliomas. 2012 J. Neurochem. pmid:22176552
Starowicz K et al. Spinal anandamide produces analgesia in neuropathic rats: possible CB(1)- and TRPV1-mediated mechanisms. 2012 Neuropharmacology pmid:22178705
Harvey BS et al. Contrasting protective effects of cannabinoids against oxidative stress and amyloid-β evoked neurotoxicity in vitro. 2012 Neurotoxicology pmid:22233683
Gatta-Cherifi B et al. Simultaneous postprandial deregulation of the orexigenic endocannabinoid anandamide and the anorexigenic peptide YY in obesity. 2012 Int J Obes (Lond) pmid:21844878
Willibald J et al. Click-modified anandamide siRNA enables delivery and gene silencing in neuronal and immune cells. 2012 J. Am. Chem. Soc. pmid:22812910
Leweke FM Anandamide dysfunction in prodromal and established psychosis. 2012 Curr. Pharm. Des. pmid:22716147
Wang ZJ et al. Cannabinoid receptor-mediated regulation of neuronal activity and signaling in glomeruli of the main olfactory bulb. 2012 J. Neurosci. pmid:22723687
Neelamegan D et al. Identification and recombinant expression of anandamide hydrolyzing enzyme from Dictyostelium discoideum. 2012 BMC Microbiol. pmid:22730904
Moreno-Sanz G et al. Pharmacological characterization of the peripheral FAAH inhibitor URB937 in female rodents: interaction with the Abcg2 transporter in the blood-placenta barrier. 2012 Br. J. Pharmacol. pmid:22774772
Rettori E et al. Anti-inflammatory effect of the endocannabinoid anandamide in experimental periodontitis and stress in the rat. 2012 Neuroimmunomodulation pmid:22777139
Chianese R et al. Anandamide regulates the expression of GnRH1, GnRH2, and GnRH-Rs in frog testis. 2012 Am. J. Physiol. Endocrinol. Metab. pmid:22669247
Chicca A et al. The antinociceptive triterpene β-amyrin inhibits 2-arachidonoylglycerol (2-AG) hydrolysis without directly targeting cannabinoid receptors. 2012 Br. J. Pharmacol. pmid:22646533
Hernangómez M et al. CD200-CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. 2012 Glia pmid:22653796
Tsumura M et al. TRPV1-mediated calcium signal couples with cannabinoid receptors and sodium-calcium exchangers in rat odontoblasts. 2012 Cell Calcium pmid:22656960
Fogaça MV et al. Fine-tuning of defensive behaviors in the dorsal periaqueductal gray by atypical neurotransmitters. 2012 Braz. J. Med. Biol. Res. pmid:22392189
Lisboa SF and Guimarães FS Differential role of CB1 and TRPV1 receptors on anandamide modulation of defensive responses induced by nitric oxide in the dorsolateral periaqueductal gray. 2012 Neuropharmacology pmid:22394688
Manna SS and Umathe SN Involvement of transient receptor potential vanilloid type 1 channels in the pro-convulsant effect of anandamide in pentylenetetrazole-induced seizures. 2012 Epilepsy Res. pmid:22386872
Lara-Celador I et al. Endocannabinoids reduce cerebral damage after hypoxic-ischemic injury in perinatal rats. 2012 Brain Res. pmid:22841538
Kaczocha M et al. Anandamide externally added to lipid vesicles containing trapped fatty acid amide hydrolase (FAAH) is readily hydrolyzed in a sterol-modulated fashion. 2012 ACS Chem Neurosci pmid:22860204
Tanveer R et al. The endocannabinoid, anandamide, augments Notch-1 signaling in cultured cortical neurons exposed to amyloid-β and in the cortex of aged rats. 2012 J. Biol. Chem. pmid:22891244
Chicca A et al. Evidence for bidirectional endocannabinoid transport across cell membranes. 2012 J. Biol. Chem. pmid:22879589
Leweke FM et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. 2012 Transl Psychiatry pmid:22832859
Méndez-Díaz M et al. The endocannabinoid system modulates the valence of the emotion associated to food ingestion. 2012 Addict Biol pmid:21182571
Whyte LS et al. Cannabinoids and bone: endocannabinoids modulate human osteoclast function in vitro. 2012 Br. J. Pharmacol. pmid:21649637
Pamplona FA and Takahashi RN Psychopharmacology of the endocannabinoids: far beyond anandamide. 2012 J. Psychopharmacol. (Oxford) pmid:21652605
Berger WT et al. Targeting fatty acid binding protein (FABP) anandamide transporters - a novel strategy for development of anti-inflammatory and anti-nociceptive drugs. 2012 PLoS ONE pmid:23236415
Skaper SD and Di Marzo V Endocannabinoids in nervous system health and disease: the big picture in a nutshell. 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108539
Roa-Coria JE et al. N-(4-Methoxy-2-nitrophenyl)hexadecanamide, a palmitoylethanolamide analogue, reduces formalin-induced nociception. 2012 Life Sci. pmid:23069585
Schmidt W et al. Cannabinoid receptor subtypes 1 and 2 mediate long-lasting neuroprotection and improve motor behavior deficits after transient focal cerebral ischemia. 2012 Neuroscience pmid:23069763
Pastuhov SI et al. Endocannabinoid-Goα signalling inhibits axon regeneration in Caenorhabditis elegans by antagonizing Gqα-PKC-JNK signalling. 2012 Nat Commun pmid:23072806
Fu J et al. A catalytically silent FAAH-1 variant drives anandamide transport in neurons. 2012 Nat. Neurosci. pmid:22101642
Feuerecker M et al. Effects of exercise stress on the endocannabinoid system in humans under field conditions. 2012 Eur. J. Appl. Physiol. pmid:22101870
Reyes-Cabello C et al. Effects of the anandamide uptake blocker AM404 on food intake depend on feeding status and route of administration. 2012 Pharmacol. Biochem. Behav. pmid:22133635
Zoerner AA et al. Simultaneous UPLC-MS/MS quantification of the endocannabinoids 2-arachidonoyl glycerol (2AG), 1-arachidonoyl glycerol (1AG), and anandamide in human plasma: minimization of matrix-effects, 2AG/1AG isomerization and degradation by toluene solvent extraction. 2012 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:21752730