Anandamide

Anandamide is a lipid of Fatty Acyls (FA) class. Anandamide is associated with abnormalities such as Dehydration. The involved functions are known as Process, Phenomenon, Phosphorylation, Catabolic Process and Gene Expression. Anandamide often locates in Nuchal region, Microglial and Hepatic. The associated genes with Anandamide are SGPL1 gene, SPTLC1 gene, RPSA gene, KDSR gene and SMPD1 gene. The related lipids are Sphingolipids, Lipopolysaccharides, Lysophospholipids, LYSO-PC and lysophosphatidylethanolamine.

Cross Reference

Introduction

To understand associated biological information of Anandamide, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Anandamide?

Anandamide is suspected in Dehydration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Anandamide

MeSH term MeSH ID Detail
Stomach Ulcer D013276 75 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Breast Neoplasms D001943 24 associated lipids
Neoplasms D009369 13 associated lipids
Pain D010146 64 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Retinopathy D003930 39 associated lipids
Fatty Liver D005234 48 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Hypotension D007022 41 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Melanoma D008545 69 associated lipids
Per page 10 20 50 100 | Total 105

PubChem Associated disorders and diseases

What pathways are associated with Anandamide

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Anandamide?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Anandamide?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Anandamide?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Anandamide?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Anandamide?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Anandamide

Download all related citations
Per page 10 20 50 100 | Total 2222
Authors Title Published Journal PubMed Link
Domenicali M et al. Increased anandamide induced relaxation in mesenteric arteries of cirrhotic rats: role of cannabinoid and vanilloid receptors. 2005 Gut pmid:15753538
Mestre L et al. Pharmacological modulation of the endocannabinoid system in a viral model of multiple sclerosis. 2005 J. Neurochem. pmid:15748152
Wiley JL et al. Task specificity of cross-tolerance between Delta9-tetrahydrocannabinol and anandamide analogs in mice. 2005 Eur. J. Pharmacol. pmid:15740725
Oddi S et al. Confocal microscopy and biochemical analysis reveal spatial and functional separation between anandamide uptake and hydrolysis in human keratinocytes. 2005 Cell. Mol. Life Sci. pmid:15723173
Lam PM et al. Characterization and comparison of recombinant human and rat TRPV1 receptors: effects of exo- and endocannabinoids. 2005 Br J Anaesth pmid:15722382
Oz M et al. Additive effects of endogenous cannabinoid anandamide and ethanol on alpha7-nicotinic acetylcholine receptor-mediated responses in Xenopus Oocytes. 2005 J. Pharmacol. Exp. Ther. pmid:15687372
Rodella LF et al. AM404, an inhibitor of anandamide reuptake decreases Fos-immunoreactivity in the spinal cord of neuropathic rats after non-noxious stimulation. 2005 Eur. J. Pharmacol. pmid:15680264
Kohro S et al. Reductions in levels of bacterial superantigens/cannabinoids by plasma exchange in a patient with severe toxic shock syndrome. 2004 Anaesth Intensive Care pmid:15675223
Mbvundula EC et al. Effects of cannabinoids on nitric oxide production by chondrocytes and proteoglycan degradation in cartilage. 2005 Biochem. Pharmacol. pmid:15670582
Kim SR et al. Transient receptor potential vanilloid subtype 1 mediates cell death of mesencephalic dopaminergic neurons in vivo and in vitro. 2005 J. Neurosci. pmid:15659603
O'Sullivan SE et al. Vascular effects of delta 9-tetrahydrocannabinol (THC), anandamide and N-arachidonoyldopamine (NADA) in the rat isolated aorta. 2005 Eur. J. Pharmacol. pmid:15659311
Bari M et al. Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. Implications for anandamide-induced apoptosis. 2005 J. Biol. Chem. pmid:15657045
Oz M et al. Effects of saturated long-chain N-acylethanolamines on voltage-dependent Ca2+ fluxes in rabbit T-tubule membranes. 2005 Arch. Biochem. Biophys. pmid:15639235
Gavva NR et al. AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. 2005 J. Pharmacol. Exp. Ther. pmid:15615864
Dinis P et al. Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis. 2004 J. Neurosci. pmid:15601931
Braun M and Kietzmann M Ischaemia-reperfusion injury in the isolated haemoperfused bovine uterus: an in vitro model of acute inflammation. 2004 Altern Lab Anim pmid:15601235
Fegley D et al. Characterization of the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597): effects on anandamide and oleoylethanolamide deactivation. 2005 J. Pharmacol. Exp. Ther. pmid:15579492
Patel S et al. The postmortal accumulation of brain N-arachidonylethanolamine (anandamide) is dependent upon fatty acid amide hydrolase activity. 2005 J. Lipid Res. pmid:15576840
Maccarrone M et al. Up-regulation of the endocannabinoid system in the uterus of leptin knockout (ob/ob) mice and implications for fertility. 2005 Mol. Hum. Reprod. pmid:15563449
Rossato M et al. Human sperm express cannabinoid receptor Cb1, the activation of which inhibits motility, acrosome reaction, and mitochondrial function. 2005 J. Clin. Endocrinol. Metab. pmid:15562018
López-Miranda V et al. Anandamide vehicles: a comparative study. 2004 Eur. J. Pharmacol. pmid:15556148
Mukherjee S et al. Species comparison and pharmacological characterization of rat and human CB2 cannabinoid receptors. 2004 Eur. J. Pharmacol. pmid:15556131
Rodríguez de Fonseca F et al. The endocannabinoid system: physiology and pharmacology. 2005 Jan-Feb Alcohol Alcohol. pmid:15550444
Basavarajappa BS and Hungund BL Role of the endocannabinoid system in the development of tolerance to alcohol. 2005 Jan-Feb Alcohol Alcohol. pmid:15550443
Golech SA et al. Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors. 2004 Brain Res. Mol. Brain Res. pmid:15548432
Muthian S et al. Anandamide content is increased and CB1 cannabinoid receptor blockade is protective during transient, focal cerebral ischemia. 2004 Neuroscience pmid:15541895
Habayeb OM et al. Plasma levels of the endocannabinoid anandamide in women--a potential role in pregnancy maintenance and labor? 2004 J. Clin. Endocrinol. Metab. pmid:15531501
Holt S et al. Lipopolysaccharide-induced pulmonary inflammation is not accompanied by a release of anandamide into the lavage fluid or a down-regulation of the activity of fatty acid amide hydrolase. 2004 Life Sci. pmid:15530507
Triggle CR et al. The endothelium in health and disease: a discussion of the contribution of non-nitric oxide endothelium-derived vasoactive mediators to vascular homeostasis in normal vessels and in type II diabetes. 2004 Mol. Cell. Biochem. pmid:15524164
McFarland MJ and Barker EL Anandamide transport. 2004 Pharmacol. Ther. pmid:15518883
Lanzafame AA et al. Effects of anandamide on the binding and signaling properties of M1 muscarinic acetylcholine receptors. 2004 Biochem. Pharmacol. pmid:15498511
Ghafouri N et al. Inhibition of monoacylglycerol lipase and fatty acid amide hydrolase by analogues of 2-arachidonoylglycerol. 2004 Br. J. Pharmacol. pmid:15492019
Fernández-Rodriguez CM et al. Circulating endogenous cannabinoid anandamide and portal, systemic and renal hemodynamics in cirrhosis. 2004 Liver Int. pmid:15482346
Piomelli D The endogenous cannabinoid system and the treatment of marijuana dependence. 2004 Neuropharmacology pmid:15464150
Huitron-Resendiz S et al. Characterization of the sleep-wake patterns in mice lacking fatty acid amide hydrolase. 2004 Sleep pmid:15453543
Contassot E et al. Arachidonylethanolamide induces apoptosis of human glioma cells through vanilloid receptor-1. 2004 J. Neuropathol. Exp. Neurol. pmid:15453094
Bátkai S et al. Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension. 2004 Circulation pmid:15451779
Rodríguez de Fonseca F [The endocannabinoid system and food intake control]. 2004 Apr-Jun Rev Med Univ Navarra pmid:15382609
Movsesyan VA et al. Anandamide-induced cell death in primary neuronal cultures: role of calpain and caspase pathways. 2004 Cell Death Differ. pmid:15375383
Appendino G et al. Development of the first ultra-potent "capsaicinoid" agonist at transient receptor potential vanilloid type 1 (TRPV1) channels and its therapeutic potential. 2005 J. Pharmacol. Exp. Ther. pmid:15356216
Giuffrida A et al. Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. 2004 Neuropsychopharmacology pmid:15354183
Di Marzo V et al. The anandamide membrane transporter. Structure-activity relationships of anandamide and oleoylethanolamine analogs with phenyl rings in the polar head group region. 2004 Bioorg. Med. Chem. pmid:15351399
McAllister SD et al. Structural mimicry in class A G protein-coupled receptor rotamer toggle switches: the importance of the F3.36(201)/W6.48(357) interaction in cannabinoid CB1 receptor activation. 2004 J. Biol. Chem. pmid:15326174
Oka S et al. 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces the migration of EoL-1 human eosinophilic leukemia cells and human peripheral blood eosinophils. 2004 J. Leukoc. Biol. pmid:15316028
Blázquez C et al. Cannabinoids inhibit the vascular endothelial growth factor pathway in gliomas. 2004 Cancer Res. pmid:15313899
Wiley JL et al. A comparison of the discriminative stimulus effects of delta(9)-tetrahydrocannabinol and O-1812, a potent and metabolically stable anandamide analog, in rats. 2004 Exp Clin Psychopharmacol pmid:15301634
Do Y et al. Activation through cannabinoid receptors 1 and 2 on dendritic cells triggers NF-kappaB-dependent apoptosis: novel role for endogenous and exogenous cannabinoids in immunoregulation. 2004 J. Immunol. pmid:15294950
Lazzarin N et al. Fluctuations of fatty acid amide hydrolase and anandamide levels during the human ovulatory cycle. 2004 Gynecol. Endocrinol. pmid:15293893
McFarland MJ et al. A role for caveolae/lipid rafts in the uptake and recycling of the endogenous cannabinoid anandamide. 2004 J. Biol. Chem. pmid:15292270
De Petrocellis L et al. Actions of two naturally occurring saturated N-acyldopamines on transient receptor potential vanilloid 1 (TRPV1) channels. 2004 Br. J. Pharmacol. pmid:15289293