HEXACOSANOIC ACID

HEXACOSANOIC ACID is a lipid of Fatty Acyls (FA) class. Hexacosanoic acid is associated with abnormalities such as Adrenoleukodystrophy, Adrenal gland hypofunction and Chronic liver disease NOS. The involved functions are known as peroxisome targeting signal-2 binding activity, Oxidation, Demyelination, Mutation and Biosynthetic Pathways. Hexacosanoic acid often locates in peroxisome, Body tissue, Mitochondria, Membrane and Cytoplasm. The associated genes with HEXACOSANOIC ACID are ABCD1 gene, TRAM1 gene, GPX1 gene, SOD1 gene and SOD2 gene. The related lipids are Fatty Acids, Stearic acid, inositolphosphorylceramide, Very long chain fatty acid and Nonesterified Fatty Acids. The related experimental models are Knock-out.

Cross Reference

Introduction

To understand associated biological information of HEXACOSANOIC ACID, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with HEXACOSANOIC ACID?

HEXACOSANOIC ACID is suspected in Adrenoleukodystrophy, Adrenal gland hypofunction, Chronic liver disease NOS and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with HEXACOSANOIC ACID

MeSH term MeSH ID Detail
Body Weight D001835 333 associated lipids
Liver Diseases D008107 31 associated lipids
Kidney Diseases D007674 29 associated lipids
Leukemia P388 D007941 43 associated lipids
Metabolism, Inborn Errors D008661 46 associated lipids
Adrenoleukodystrophy D000326 29 associated lipids
Diffuse Cerebral Sclerosis of Schilder D002549 8 associated lipids
Arteriosclerosis D001161 86 associated lipids
Metabolic Diseases D008659 12 associated lipids
Adrenocortical Hyperfunction D000308 3 associated lipids
Per page 10 20 | Total 17

PubChem Associated disorders and diseases

What pathways are associated with HEXACOSANOIC ACID

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with HEXACOSANOIC ACID?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with HEXACOSANOIC ACID?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with HEXACOSANOIC ACID?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with HEXACOSANOIC ACID?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with HEXACOSANOIC ACID?

Knock-out

Knock-out are used in the study 'A key role for the peroxisomal ABCD2 transporter in fatty acid homeostasis.' (Fourcade S et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with HEXACOSANOIC ACID

Download all related citations
Per page 10 20 50 100 | Total 136
Authors Title Published Journal PubMed Link
Deng F et al. New flavonoids and other constituents from Lespedeza cuneata. J Asian Nat Prod Res pmid:17943561
Kaal E et al. A fast method for the identification of Mycobacterium tuberculosis in sputum and cultures based on thermally assisted hydrolysis and methylation followed by gas chromatography-mass spectrometry. 2009 J Chromatogr A pmid:19631943
Chen JH et al. Clinical evaluation of 546 tetracycline-stained teeth treated with porcelain laminate veneers. 2005 J Dent pmid:15652162
Bai Y et al. Active components from Siberian ginseng (Eleutherococcus senticosus) for protection of amyloid β(25-35)-induced neuritic atrophy in cultured rat cortical neurons. 2011 J Nat Med pmid:21301979
Meng Z et al. Rapid determination of C12-C26 non-derivatized fatty acids in human serum by fast gas chromatography. 2007 J Sep Sci pmid:17623434
Zarrouk A et al. Fatty acid profiles in demented patients: identification of hexacosanoic acid (C26:0) as a blood lipid biomarker of dementia. 2015 J. Alzheimers Dis. pmid:25428249
Tsuji S et al. Increased synthesis of hexacosanoic acid (C23:0) by cultured skin fibroblasts from patients with adrenoleukodystrophy (ALD) and adrenomyeloneuropathy (AMN). 1981 J. Biochem. pmid:7309718
Pillai BK et al. Fast diffusion of very long chain saturated fatty acids across a bilayer membrane and their rapid extraction by cyclodextrins: implications for adrenoleukodystrophy. 2009 J. Biol. Chem. pmid:19801636
Shivashankar S and Sumathi M Do seed VLCFAs trigger spongy tissue formation in Alphonso mango by inducing germination? 2015 J. Biosci. pmid:25963264
Moser HW Adrenoleukodystrophy: from bedside to molecular biology. 1987 J. Child Neurol. pmid:3598142
Caruso U et al. Determination of very-long-chain fatty acids in plasma by a simplified gas chromatographic-mass spectrometric procedure. 1991 J. Chromatogr. pmid:2026688
Wanders RJ et al. Peroxisomal fatty acid beta-oxidation in relation to the accumulation of very long chain fatty acids in cultured skin fibroblasts from patients with Zellweger syndrome and other peroxisomal disorders. 1987 J. Clin. Invest. pmid:3680527
Whitcomb RW et al. Effects of long-chain, saturated fatty acids on membrane microviscosity and adrenocorticotropin responsiveness of human adrenocortical cells in vitro. 1988 J. Clin. Invest. pmid:2891726
Lambert MA et al. Analysis of mycolic acid cleavage products and cellular fatty acids of Mycobacterium species by capillary gas chromatography. 1986 J. Clin. Microbiol. pmid:3084554
Cappa M et al. Is subclinical adrenal failure in adrenoleukodystrophy/adrenomyeloneuropathy reversible? 2011 J. Endocrinol. Invest. pmid:21399389
Engelen M et al. Bezafibrate lowers very long-chain fatty acids in X-linked adrenoleukodystrophy fibroblasts by inhibiting fatty acid elongation. 2012 J. Inherit. Metab. Dis. pmid:22447153
Cappa M et al. A mixture of oleic, erucic and conjugated linoleic acids modulates cerebrospinal fluid inflammatory markers and improve somatosensorial evoked potential in X-linked adrenoleukodystrophy female carriers. 2012 J. Inherit. Metab. Dis. pmid:22189598
Watkins PA et al. Adrenoleukodystrophy: biochemical procedures in diagnosis, prevention and treatment. 1987 J. Inherit. Metab. Dis. pmid:3119941
Govaerts L et al. Disturbed very long chain (C24-C26) fatty acid pattern in fibroblasts of patients with Zellweger's syndrome. 1985 J. Inherit. Metab. Dis. pmid:3921760
Christensen E et al. A new peroxisomal beta-oxidation disorder in twin neonates: defective oxidation of both cerotic and pristanic acids. 1997 J. Inherit. Metab. Dis. pmid:9323560