Linoleic acid

Linoleic acid is a lipid of Fatty Acyls (FA) class. Linoleic acid is associated with abnormalities such as Diabetes Mellitus, Non-Insulin-Dependent, Metabolic syndrome, Obesity, Chronic Obstructive Airway Disease and Pneumonia. The involved functions are known as Insulin Resistance, Inflammation, Synthesis, Pathological accumulation of air in tissues and cytokine biosynthesis. The associated genes with Linoleic acid are TNF gene, CCL2 gene and TLR4 gene. The related lipids are palmitoleic acid, nervonic acid and Sphingolipids.

Cross Reference

Introduction

To understand associated biological information of Linoleic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Linoleic acid?

Linoleic acid is suspected in Obesity, Diabetes Mellitus, Non-Insulin-Dependent, Metabolic syndrome, Chronic Obstructive Airway Disease, Pneumonia and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Linoleic acid

MeSH term MeSH ID Detail
Genetic Diseases, X-Linked D040181 2 associated lipids
Lactose Intolerance D007787 2 associated lipids
Circoviridae Infections D018173 2 associated lipids
Spirochaetales Infections D013145 2 associated lipids
Lymphopenia D008231 2 associated lipids
Pneumonia, Viral D011024 3 associated lipids
Pregnancy Complications, Neoplastic D011252 4 associated lipids
Melanosis D008548 4 associated lipids
Exocrine Pancreatic Insufficiency D010188 6 associated lipids
Otitis Externa D010032 8 associated lipids
Per page 10 20 50 100 | Total 75

PubChem Associated disorders and diseases

What pathways are associated with Linoleic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Linoleic acid?

There are no associated biomedical information in the current reference collection.

What functions are associated with Linoleic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Linoleic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Linoleic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Linoleic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Linoleic acid

Download all related citations
Per page 10 20 50 100 | Total 4513
Authors Title Published Journal PubMed Link
Liang S et al. Physicochemical Properties and Fatty Acid Profiles of Elaeagnus mollis Diels Nut Oils. 2015 J Oleo Sci pmid:26632946
Qian Z et al. Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice. 2015 Sci Rep pmid:26615818
Fu X et al. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. 2015 Sci Rep pmid:26567525
Guyenet SJ and Carlson SE Increase in adipose tissue linoleic acid of US adults in the last half century. 2015 Adv Nutr pmid:26567191
Phan CW et al. Uridine from Pleurotus giganteus and Its Neurite Outgrowth Stimulatory Effects with Underlying Mechanism. 2015 PLoS ONE pmid:26565787
Lee CW et al. Structural basis for the ligand-binding specificity of fatty acid-binding proteins (pFABP4 and pFABP5) in gentoo penguin. 2015 Biochem. Biophys. Res. Commun. pmid:26206084
Hasiewicz-Derkacz K et al. Natural phenolics greatly increase flax (Linum usitatissimum) oil stability. 2015 BMC Biotechnol. pmid:26123633
Rosero DS et al. Impact of dietary lipids on sow milk composition and balance of essential fatty acids during lactation in prolific sows. 2015 J. Anim. Sci. pmid:26115280
Shivashankar S and Sumathi M Do seed VLCFAs trigger spongy tissue formation in Alphonso mango by inducing germination? 2015 J. Biosci. pmid:25963264
Alsaidan M et al. Cells to Surgery Quiz: July 2015. 2015 J. Invest. Dermatol. pmid:26066894
Schumann T et al. Deregulation of PPARβ/δ target genes in tumor-associated macrophages by fatty acid ligands in the ovarian cancer microenvironment. 2015 Oncotarget pmid:25968567
Hirata A et al. A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus acidophilus. 2015 J. Lipid Res. pmid:25966711
Turci F et al. Free-radical chemistry as a means to evaluate lunar dust health hazard in view of future missions to the moon. 2015 Astrobiology pmid:25946080
Negrini R et al. pH-responsive lyotropic liquid crystals and their potential therapeutic role in cancer treatment. 2015 Chem. Commun. (Camb.) pmid:25783035
Fajardo VA et al. Cardiolipin linoleic acid content and mitochondrial cytochrome c oxidase activity are associated in rat skeletal muscle. 2015 Chem. Phys. Lipids pmid:25727371
Askari M et al. Tissue fatty acid composition and secretory phospholipase-A2 activity in oral squamous cell carcinoma. 2015 Clin Transl Oncol pmid:25351172
Liu H et al. Transient receptor potential vanilloid 1 gene deficiency ameliorates hepatic injury in a mouse model of chronic binge alcohol-induced alcoholic liver disease. 2015 Am. J. Pathol. pmid:25447051
Reinders I et al. Plasma phospholipid PUFAs are associated with greater muscle and knee extension strength but not with changes in muscle parameters in older adults. 2015 J. Nutr. pmid:25355842
Perumalsamy H et al. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. 2015 Parasit Vectors pmid:25928224
Nakahashi H et al. Evaluation of the Key Odorants in Volatile Oils from Tubers of Apios americana Medikus. 2015 J Oleo Sci pmid:26521814