Linoleic acid

Linoleic acid is a lipid of Fatty Acyls (FA) class. Linoleic acid is associated with abnormalities such as Diabetes Mellitus, Non-Insulin-Dependent, Metabolic syndrome, Obesity, Chronic Obstructive Airway Disease and Pneumonia. The involved functions are known as Insulin Resistance, Inflammation, Synthesis, Pathological accumulation of air in tissues and cytokine biosynthesis. The associated genes with Linoleic acid are TNF gene, CCL2 gene and TLR4 gene. The related lipids are palmitoleic acid, nervonic acid and Sphingolipids.

Cross Reference

Introduction

To understand associated biological information of Linoleic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Linoleic acid?

Linoleic acid is suspected in Obesity, Diabetes Mellitus, Non-Insulin-Dependent, Metabolic syndrome, Chronic Obstructive Airway Disease, Pneumonia and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Linoleic acid

MeSH term MeSH ID Detail
Tuberculosis D014376 20 associated lipids
Thrombosis D013927 49 associated lipids
Stomach Neoplasms D013274 24 associated lipids
Staphylococcal Skin Infections D013207 9 associated lipids
Spirochaetales Infections D013145 2 associated lipids
Seizures D012640 87 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Pregnancy Complications, Neoplastic D011252 4 associated lipids
Precancerous Conditions D011230 48 associated lipids
Polycystic Ovary Syndrome D011085 14 associated lipids
Per page 10 20 50 100 | Total 75

PubChem Associated disorders and diseases

What pathways are associated with Linoleic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Linoleic acid?

There are no associated biomedical information in the current reference collection.

What functions are associated with Linoleic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Linoleic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Linoleic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Linoleic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Linoleic acid

Download all related citations
Per page 10 20 50 100 | Total 4513
Authors Title Published Journal PubMed Link
Song E et al. Deamidated lipocalin-2 induces endothelial dysfunction and hypertension in dietary obese mice. 2014 J Am Heart Assoc pmid:24721803
Reed S et al. Dietary zinc deficiency affects blood linoleic acid: dihomo-γ-linolenic acid (LA:DGLA) ratio; a sensitive physiological marker of zinc status in vivo (Gallus gallus). 2014 Nutrients pmid:24658588
Armstrong EH et al. Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor β/δ (FABP5-PPARβ/δ) signaling pathway. 2014 J. Biol. Chem. pmid:24692551
Petzinger C et al. Lipid metabolic dose response to dietary alpha-linolenic acid in monk parrot (Myiopsitta monachus). 2014 Lipids pmid:24293226
Hodson L et al. Plasma and erythrocyte fatty acids reflect intakes of saturated and n-6 PUFA within a similar time frame. 2014 J. Nutr. pmid:24225449
Qin G et al. Evolution of the aroma volatiles of pear fruits supplemented with fatty acid metabolic precursors. 2014 Molecules pmid:25474290
Ebrahimi M et al. Effects of oils rich in linoleic and α-linolenic acids on fatty acid profile and gene expression in goat meat. 2014 Nutrients pmid:25255382
Xu QY et al. Metabolomic analysis of simvastatin and fenofibrate intervention in high-lipid diet-induced hyperlipidemia rats. 2014 Acta Pharmacol. Sin. pmid:25220639
Victoria FN et al. Antioxidant and antidepressant-like activities of semi-synthetic α-phenylseleno citronellal. 2014 Eur. J. Pharmacol. pmid:25218989
Farvid MS et al. Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. 2014 Circulation pmid:25161045
Harris WS and Shearer GC Omega-6 fatty acids and cardiovascular disease: friend, not foe? 2014 Circulation pmid:25161044
Saito HE et al. Incorporation of exogenous fatty acids protects Enterococcus faecalis from membrane-damaging agents. 2014 Appl. Environ. Microbiol. pmid:25128342
Wu JH et al. Circulating omega-6 polyunsaturated fatty acids and total and cause-specific mortality: the Cardiovascular Health Study. 2014 Circulation pmid:25124495
Phan CW et al. Intrastrain comparison of the chemical composition and antioxidant activity of an edible mushroom, Pleurotus giganteus, and its potent neuritogenic properties. 2014 ScientificWorldJournal pmid:25121118
Purushothaman D et al. Flaxseed oil supplementation alters the expression of inflammatory-related genes in dogs. 2014 Genet. Mol. Res. pmid:25078588
van Schalkwijk DB et al. Dietary medium chain fatty acid supplementation leads to reduced VLDL lipolysis and uptake rates in comparison to linoleic acid supplementation. 2014 PLoS ONE pmid:25049048
Morris JB et al. Flavonol content, oil%, and fatty acid composition variability in seeds of Teramnus labialis and T. uncinatus accessions with nutraceutical potential. 2014 J Diet Suppl pmid:25054688
Buehlmann C et al. Desert ants locate food by combining high sensitivity to food odors with extensive crosswind runs. 2014 Curr. Biol. pmid:24726153
Arcan I and YemenicioÄŸlu A Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds. 2014 J. Agric. Food Chem. pmid:25025594
Buček A et al. Δ12-Fatty acid desaturase from Candida parapsilosis is a multifunctional desaturase producing a range of polyunsaturated and hydroxylated fatty acids. 2014 PLoS ONE pmid:24681902
Rodriguez MA et al. Concordance analysis between estimation methods of milk fatty acid content. 2014 Food Chem pmid:24629954
Spartano NL et al. Linoleic acid suppresses cholesterol efflux and ATP-binding cassette transporters in murine bone marrow-derived macrophages. 2014 Lipids pmid:24595513
Scalerandi MV et al. Effect of conjugated linoleic acid mixtures and different edible oils in body composition and lipid regulation in mice. 2014 Nutr Hosp pmid:24559004
Nadtochiy SM et al. Mitochondrially targeted nitro-linoleate: a new tool for the study of cardioprotection. 2014 Br. J. Pharmacol. pmid:24102583
Nehdi IA et al. Chamaerops humilis L. var. argentea André date palm seed oil: a potential dietetic plant product. 2014 J. Food Sci. pmid:24666023
Sarath Josh MK et al. Phthalates efficiently bind to human peroxisome proliferator activated receptor and retinoid X receptor α, β, γ subtypes: an in silico approach. 2014 J Appl Toxicol pmid:23843199
Negrini R et al. Influence of electrostatic interactions on the release of charged molecules from lipid cubic phases. 2014 Langmuir pmid:24673189
Arfaoui MO et al. Variation in oil content, fatty acid and phytosterols profile of Onopordum acanthium L. during seed development. 2014 Nat. Prod. Res. pmid:25103576
Wright CR and Setzer WN Chemical composition of volatiles from Opuntia littoralis, Opuntia ficus-indica, and Opuntia prolifera growing on Catalina Island, California. 2014 Nat. Prod. Res. pmid:24354326
Huang X et al. Serum fatty acid patterns, insulin sensitivity and the metabolic syndrome in individuals with chronic kidney disease. 2014 J. Intern. Med. pmid:24011327
Choque B et al. Linoleic acid: between doubts and certainties. 2014 Biochimie pmid:23900039
Radice M et al. Chemical characterization and antioxidant activity of Amazonian (Ecuador) Caryodendron orinocense Karst. and Bactris gasipaes Kunth seed oils. 2014 J Oleo Sci pmid:25391685
Garrel G et al. Unsaturated fatty acids disrupt Smad signaling in gonadotrope cells leading to inhibition of FSHβ gene expression. 2014 Endocrinology pmid:24248462
Alvheim AR et al. Dietary linoleic acid elevates the endocannabinoids 2-AG and anandamide and promotes weight gain in mice fed a low fat diet. 2014 Lipids pmid:24081493
Huang FC et al. Expression and characterization of CYP52 genes involved in the biosynthesis of sophorolipid and alkane metabolism from Starmerella bombicola. 2014 Appl. Environ. Microbiol. pmid:24242247
Larsson N et al. Lipid mediator profiles differ between lung compartments in asthmatic and healthy humans. 2014 Eur. Respir. J. pmid:24036245
Yang Q et al. Anti-thrombotic effects of α-linolenic acid isolated from Zanthoxylum bungeanum Maxim seeds. 2014 BMC Complement Altern Med pmid:25252789
Shimizu N et al. De novo biosynthesis of linoleic acid and its conversion to the hydrocarbon (Z,Z)-6,9-heptadecadiene in the astigmatid mite, Carpoglyphus lactis: incorporation experiments with 13C-labeled glucose. 2014 Insect Biochem. Mol. Biol. pmid:24333472
Wu MH et al. A novel sodium N-fatty acyl amino acid surfactant using silkworm pupae as stock material. 2014 Sci Rep pmid:24651079
Reiner WB et al. Fatty acids in mountain gorilla diets: implications for primate nutrition and health. 2014 Am. J. Primatol. pmid:24243235
Öztürk M et al. The fatty acid compositions of several plant seed oils belong to Leguminosae and Umbelliferae families. 2014 Environ Monit Assess pmid:24357269
Chevrot M et al. Obesity interferes with the orosensory detection of long-chain fatty acids in humans. 2014 Am. J. Clin. Nutr. pmid:24522446
Hoffman LC et al. Lipid and protein stability and sensory evaluation of ostrich (Struthio camelus) droëwors with the addition of rooibos tea extract (Aspalathus linearis) as a natural antioxidant. 2014 Meat Sci. pmid:24334052
Canetti L et al. Linoleic and alpha linolenic acids ameliorate streptozotocin-induced diabetes in mice. 2014 Arch. Physiol. Biochem. pmid:24320056
Ambrozova JV et al. Influence of extractive solvents on lipid and fatty acids content of edible freshwater algal and seaweed products, the green Microalga Chlorella kessleri and the Cyanobacterium Spirulina platensis. 2014 Molecules pmid:24566307
Bazongo P et al. Characteristics, composition and oxidative stability of Lannea microcarpa seed and seed oil. 2014 Molecules pmid:24566330
Kwon B et al. Oleate prevents palmitate-induced mitochondrial dysfunction, insulin resistance and inflammatory signaling in neuronal cells. 2014 Biochim. Biophys. Acta pmid:24732014
Breiden B and Sandhoff K The role of sphingolipid metabolism in cutaneous permeability barrier formation. 2014 Biochim. Biophys. Acta pmid:23954553
Nardi F et al. Enhanced insulin sensitivity associated with provision of mono and polyunsaturated fatty acids in skeletal muscle cells involves counter modulation of PP2A. 2014 PLoS ONE pmid:24632852
Mahendran Y et al. Association of erythrocyte membrane fatty acids with changes in glycemia and risk of type 2 diabetes. 2014 Am. J. Clin. Nutr. pmid:24153340