Linoleic acid

Linoleic acid is a lipid of Fatty Acyls (FA) class. Linoleic acid is associated with abnormalities such as Diabetes Mellitus, Non-Insulin-Dependent, Metabolic syndrome, Obesity, Chronic Obstructive Airway Disease and Pneumonia. The involved functions are known as Insulin Resistance, Inflammation, Synthesis, Pathological accumulation of air in tissues and cytokine biosynthesis. The associated genes with Linoleic acid are TNF gene, CCL2 gene and TLR4 gene. The related lipids are palmitoleic acid, nervonic acid and Sphingolipids.

Cross Reference

Introduction

To understand associated biological information of Linoleic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Linoleic acid?

Linoleic acid is suspected in Obesity, Diabetes Mellitus, Non-Insulin-Dependent, Metabolic syndrome, Chronic Obstructive Airway Disease, Pneumonia and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Linoleic acid

MeSH term MeSH ID Detail
Metabolism, Inborn Errors D008661 46 associated lipids
Otitis Externa D010032 8 associated lipids
Pain D010146 64 associated lipids
Exocrine Pancreatic Insufficiency D010188 6 associated lipids
Pneumonia, Viral D011024 3 associated lipids
Polycystic Ovary Syndrome D011085 14 associated lipids
Precancerous Conditions D011230 48 associated lipids
Pregnancy Complications, Neoplastic D011252 4 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Seizures D012640 87 associated lipids
Spirochaetales Infections D013145 2 associated lipids
Staphylococcal Skin Infections D013207 9 associated lipids
Stomach Neoplasms D013274 24 associated lipids
Thrombosis D013927 49 associated lipids
Tuberculosis D014376 20 associated lipids
Vitamin D Deficiency D014808 13 associated lipids
Vitamin E Deficiency D014811 29 associated lipids
Weight Gain D015430 101 associated lipids
Weight Loss D015431 56 associated lipids
Mammary Neoplasms, Animal D015674 27 associated lipids
Per page 10 20 50 100 | Total 75

PubChem Associated disorders and diseases

What pathways are associated with Linoleic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Linoleic acid?

There are no associated biomedical information in the current reference collection.

What functions are associated with Linoleic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Linoleic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Linoleic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Linoleic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Linoleic acid

Download all related citations
Per page 10 20 50 100 | Total 4513
Authors Title Published Journal PubMed Link
CHRISTAKIS GJ et al. EFFECT OF A SERUM CHOLESTEROL-LOWERING DIET ON COMPOSITION OF DEPOT FAT IN MAN. 1965 Am. J. Clin. Nutr. pmid:14253897
ZUKEL MC FAT-CONTROLLED DIETS. 1965 Am. J. Clin. Nutr. pmid:14253901
Tokede OA et al. Plasma phospholipid trans fatty acids and risk of heart failure. 2013 Am. J. Clin. Nutr. pmid:23446892
CAMPBELL AM et al. SERUM LIPIDS OF MEN FED DIETS DIFFERING IN PROTEIN QUALITY AND LINOLEIC ACID CONTENT. 1965 Am. J. Clin. Nutr. pmid:14332349
Bjerve KS et al. Alpha-linolenic acid deficiency in man: effect of ethyl linolenate on plasma and erythrocyte fatty acid composition and biosynthesis of prostanoids. 1987 Am. J. Clin. Nutr. pmid:3310599
Hennig B et al. Linoleic acid activates nuclear transcription factor-kappa B (NF-kappa B) and induces NF-kappa B-dependent transcription in cultured endothelial cells. 1996 Am. J. Clin. Nutr. pmid:8602587
Glatz JF et al. Fatty acid composition of serum cholesteryl esters and erythrocyte membranes as indicators of linoleic acid intake in man. 1989 Am. J. Clin. Nutr. pmid:2916448
KRAUSE RF LIVER LIPIDS IN A CASE OF HYPERVITAMINOSIS A. 1965 Am. J. Clin. Nutr. pmid:14301352
Anderson RL Quantitation of the effects of trans isomers of linoleic acid on the metabolism of linoleic acid. 1982 Am. J. Clin. Nutr. pmid:7081132
Hennig B and Watkins BA Linoleic acid and linolenic acid: effect on permeability properties of cultured endothelial cell monolayers. 1989 Am. J. Clin. Nutr. pmid:2563626
Mantzioris E et al. Differences exist in the relationships between dietary linoleic and alpha-linolenic acids and their respective long-chain metabolites. 1995 Am. J. Clin. Nutr. pmid:7840069
Siguel E Does linoleic acid contribute to coronary artery disease? 1995 Am. J. Clin. Nutr. pmid:7840081
Gillingham LG et al. Dietary oils and FADS1-FADS2 genetic variants modulate [13C]α-linolenic acid metabolism and plasma fatty acid composition. 2013 Am. J. Clin. Nutr. pmid:23221573
O'Connell ED et al. Diet and risk factors for age-related maculopathy. 2008 Am. J. Clin. Nutr. pmid:18326611
Villalpando S et al. [13C]linoleic acid oxidation and transfer into milk in stunted lactating women with contrasting body mass indexes. 2001 Am. J. Clin. Nutr. pmid:11729835
Anderson GJ and Connor WE On the demonstration of omega-3 essential-fatty-acid deficiency in humans. 1989 Am. J. Clin. Nutr. pmid:2494878
Hrboticky N et al. Retina fatty acid composition of piglets fed from birth with a linoleic acid-rich vegetable-oil formula for infants. 1991 Am. J. Clin. Nutr. pmid:1989416
Martin JC et al. Essential fatty acid composition of human colostrum triglycerides: its relationship with adipose tissue composition. 1991 Am. J. Clin. Nutr. pmid:1951153
CENTURY B et al. INTERRELATIONSHIPS OF DIETARY LIPIDS UPON FATTY ACID COMPOSITION OF BRAIN MITOCHONDRIA, ERYTHROCYTES AND HEART TISSUE IN CHICKS. 1963 Am. J. Clin. Nutr. pmid:14101397
Carnielli VP et al. Medium-chain triacylglycerols in formulas for preterm infants: effect on plasma lipids, circulating concentrations of medium-chain fatty acids, and essential fatty acids. 1996 Am. J. Clin. Nutr. pmid:8694014
Kestin M et al. n-3 fatty acids of marine origin lower systolic blood pressure and triglycerides but raise LDL cholesterol compared with n-3 and n-6 fatty acids from plants. 1990 Am. J. Clin. Nutr. pmid:1971991
Rioux FM and Innis SM Arachidonic acid concentrations in plasma and liver phospholipid and cholesterol esters of piglets raised on formulas with different linoleic and linolenic acid contents. 1992 Am. J. Clin. Nutr. pmid:1609747
Rudel LL et al. Dietary polyunsaturated fat modifies low-density lipoproteins and reduces atherosclerosis of nonhuman primates with high and low diet responsiveness. 1995 Am. J. Clin. Nutr. pmid:7625361
Herbel BK et al. Safflower oil consumption does not increase plasma conjugated linoleic acid concentrations in humans. 1998 Am. J. Clin. Nutr. pmid:9459383
Reeves VB et al. Variations in plasma fatty acid concentrations during a one-year self-selected dietary intake study. 1984 Am. J. Clin. Nutr. pmid:6507356
Voorrips LE et al. Intake of conjugated linoleic acid, fat, and other fatty acids in relation to postmenopausal breast cancer: the Netherlands Cohort Study on Diet and Cancer. 2002 Am. J. Clin. Nutr. pmid:12324303
Blair IA et al. Dietary modification of omega 6 fatty acid intake and its effect on urinary eicosanoid excretion. 1993 Am. J. Clin. Nutr. pmid:8424383
SINGLETON WS CHARACTERIZED OILS FOR USE IN INTRAVENOUS FAT EMULSIONS. 1965 Am. J. Clin. Nutr. pmid:14262113
Hodgson JM et al. Can linoleic acid contribute to coronary artery disease? 1993 Am. J. Clin. Nutr. pmid:8192728
Innis SM and Hansen JW Plasma fatty acid responses, metabolic effects, and safety of microalgal and fungal oils rich in arachidonic and docosahexaenoic acids in healthy adults. 1996 Am. J. Clin. Nutr. pmid:8694015
Reaven P et al. Feasibility of using an oleate-rich diet to reduce the susceptibility of low-density lipoprotein to oxidative modification in humans. 1991 Am. J. Clin. Nutr. pmid:1897476
Murphy J et al. Fat malabsorption in cystic fibrosis patients. 1999 Am. J. Clin. Nutr. pmid:10539762
Warensjö E et al. Factor analysis of fatty acids in serum lipids as a measure of dietary fat quality in relation to the metabolic syndrome in men. 2006 Am. J. Clin. Nutr. pmid:16895896
Freese R et al. High intakes of vegetables, berries, and apples combined with a high intake of linoleic or oleic acid only slightly affect markers of lipid peroxidation and lipoprotein metabolism in healthy subjects. 2002 Am. J. Clin. Nutr. pmid:12399265
Blasbalg TL et al. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. 2011 Am. J. Clin. Nutr. pmid:21367944
Baylin A et al. alpha-Linolenic acid, Delta6-desaturase gene polymorphism, and the risk of nonfatal myocardial infarction. 2007 Am. J. Clin. Nutr. pmid:17284757
Salem N and Kuratko CN Lack of evidence for increased α-linolenic acid metabolism in vegetarians. 2011 Am. J. Clin. Nutr. pmid:21430120
Willett WC Specific fatty acids and risks of breast and prostate cancer: dietary intake. 1997 Am. J. Clin. Nutr. pmid:9394715
Friesen RW and Innis SM Linoleic acid is associated with lower long-chain n-6 and n-3 fatty acids in red blood cell lipids of Canadian pregnant women. 2010 Am. J. Clin. Nutr. pmid:19923368
Goyens PL et al. Conversion of alpha-linolenic acid in humans is influenced by the absolute amounts of alpha-linolenic acid and linoleic acid in the diet and not by their ratio. 2006 Am. J. Clin. Nutr. pmid:16825680
Abbey M et al. Oxidation of low-density lipoproteins: intraindividual variability and the effect of dietary linoleate supplementation. 1993 Am. J. Clin. Nutr. pmid:8438773
Almario RU et al. Effects of walnut consumption on plasma fatty acids and lipoproteins in combined hyperlipidemia. 2001 Am. J. Clin. Nutr. pmid:11451720
Makrides M et al. Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. 1994 Am. J. Clin. Nutr. pmid:7913291
Larbi A et al. Acute in vivo elevation of intravascular triacylglycerol lipolysis impairs peripheral T cell activation in humans. 2005 Am. J. Clin. Nutr. pmid:16280424
OLSON FE et al. The use of diets containing large amounts of linoleic acid. 1958 Nov-Dec Am. J. Clin. Nutr. pmid:13594895
Mahendran Y et al. Association of erythrocyte membrane fatty acids with changes in glycemia and risk of type 2 diabetes. 2014 Am. J. Clin. Nutr. pmid:24153340
Nestel PJ et al. Effect of a stearic acid-rich, structured triacylglycerol on plasma lipid concentrations. 1998 Am. J. Clin. Nutr. pmid:9846846
Hodge AM et al. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. 2007 Am. J. Clin. Nutr. pmid:17616780
Yary T et al. Serum n-6 polyunsaturated fatty acids, Δ5- and Δ6-desaturase activities, and risk of incident type 2 diabetes in men: the Kuopio Ischaemic Heart Disease Risk Factor Study. 2016 Am. J. Clin. Nutr. pmid:27009754
Arca M et al. Erythrocyte fatty acid composition and gallstone disease: results of an epidemiological survey. 1987 Am. J. Clin. Nutr. pmid:3604961