Linoleic acid

Linoleic acid is a lipid of Fatty Acyls (FA) class. Linoleic acid is associated with abnormalities such as Diabetes Mellitus, Non-Insulin-Dependent, Metabolic syndrome, Obesity, Chronic Obstructive Airway Disease and Pneumonia. The involved functions are known as Insulin Resistance, Inflammation, Synthesis, Pathological accumulation of air in tissues and cytokine biosynthesis. The associated genes with Linoleic acid are TNF gene, CCL2 gene and TLR4 gene. The related lipids are palmitoleic acid, nervonic acid and Sphingolipids.

Cross Reference

Introduction

To understand associated biological information of Linoleic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Linoleic acid?

Linoleic acid is suspected in Obesity, Diabetes Mellitus, Non-Insulin-Dependent, Metabolic syndrome, Chronic Obstructive Airway Disease, Pneumonia and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Linoleic acid

MeSH term MeSH ID Detail
Prostatic Neoplasms D011471 126 associated lipids
Kidney Diseases D007674 29 associated lipids
Weight Gain D015430 101 associated lipids
Glioma D005910 112 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Metabolism, Inborn Errors D008661 46 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Thrombosis D013927 49 associated lipids
Arteriosclerosis D001161 86 associated lipids
Leukemia D007938 74 associated lipids
Per page 10 20 50 100 | Total 75

PubChem Associated disorders and diseases

What pathways are associated with Linoleic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Linoleic acid?

There are no associated biomedical information in the current reference collection.

What functions are associated with Linoleic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Linoleic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Linoleic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Linoleic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Linoleic acid

Download all related citations
Per page 10 20 50 100 | Total 4513
Authors Title Published Journal PubMed Link
Ressurreição M et al. Sensory Protein Kinase Signaling in Schistosoma mansoni Cercariae: Host Location and Invasion. 2015 J. Infect. Dis. pmid:26401028
Delmastro-Greenwood M et al. Nitrite and nitrate-dependent generation of anti-inflammatory fatty acid nitroalkenes. 2015 Free Radic. Biol. Med. pmid:26385079
Alvarruiz A et al. Quality and Composition of Virgin Olive Oil from Varietties Grown in Castilla-La Mancha (Spain). 2015 J Oleo Sci pmid:26369595
Frenzel E et al. α1-Antitrypsin Combines with Plasma Fatty Acids and Induces Angiopoietin-like Protein 4 Expression. 2015 J. Immunol. pmid:26363050
Mizuta K et al. Novel identification of the free fatty acid receptor FFAR1 that promotes contraction in airway smooth muscle. 2015 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:26342087
Lands B Omega-3 PUFAs Lower the Propensity for Arachidonic Acid Cascade Overreactions. 2015 Biomed Res Int pmid:26301244
He J et al. Correlation of polyunsaturated fatty acids with the cold adaptation of Rhodotorula glutinis. 2015 Yeast pmid:26284451
Mansour AB et al. Effect of agricultural sites on differentiation between Chemlali and Neb Jmel olive oils. 2015 J Oleo Sci pmid:25833451
Alnaseri H et al. Inducible Expression of a Resistance-Nodulation-Division-Type Efflux Pump in Staphylococcus aureus Provides Resistance to Linoleic and Arachidonic Acids. 2015 J. Bacteriol. pmid:25802299
Fajardo VA et al. Cardiolipin linoleic acid content and mitochondrial cytochrome c oxidase activity are associated in rat skeletal muscle. 2015 Chem. Phys. Lipids pmid:25727371
Chen S et al. Profiling of volatile compounds and associated gene expression and enzyme activity during fruit development in two cucumber cultivars. 2015 PLoS ONE pmid:25799542
Manosalva C et al. Cloning, identification and functional characterization of bovine free fatty acid receptor-1 (FFAR1/GPR40) in neutrophils. 2015 PLoS ONE pmid:25790461
Xing J et al. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods. 2015 PLoS ONE pmid:25789875
Saccenti E et al. Strategies for individual phenotyping of linoleic and arachidonic acid metabolism using an oral glucose tolerance test. 2015 PLoS ONE pmid:25786212
Vlachogianni IC et al. In vitro assessment of antioxidant activity of tyrosol, resveratrol and their acetylated derivatives. 2015 Food Chem pmid:25660873
Yoshida Y et al. Chemistry of lipid peroxidation products and their use as biomarkers in early detection of diseases. 2015 J Oleo Sci pmid:25766928
Ciepiela P et al. Arachidonic and linoleic acid derivatives impact oocyte ICSI fertilization--a prospective analysis of follicular fluid and a matched oocyte in a 'one follicle--one retrieved oocyte--one resulting embryo' investigational setting. 2015 PLoS ONE pmid:25763593
Hernandez LR et al. Effect of plant growth regulators on fatty acids composition in Jatropha curcas L. callus culture. 2015 J Oleo Sci pmid:25757437
Askari M et al. Tissue fatty acid composition and secretory phospholipase-A2 activity in oral squamous cell carcinoma. 2015 Clin Transl Oncol pmid:25351172
Naughton SS et al. Australia's nutrition transition 1961-2009: a focus on fats. 2015 Br. J. Nutr. pmid:26123446