Linoleic acid

Linoleic acid is a lipid of Fatty Acyls (FA) class. Linoleic acid is associated with abnormalities such as Diabetes Mellitus, Non-Insulin-Dependent, Metabolic syndrome, Obesity, Chronic Obstructive Airway Disease and Pneumonia. The involved functions are known as Insulin Resistance, Inflammation, Synthesis, Pathological accumulation of air in tissues and cytokine biosynthesis. The associated genes with Linoleic acid are TNF gene, CCL2 gene and TLR4 gene. The related lipids are palmitoleic acid, nervonic acid and Sphingolipids.

Cross Reference

Introduction

To understand associated biological information of Linoleic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Linoleic acid?

Linoleic acid is suspected in Obesity, Diabetes Mellitus, Non-Insulin-Dependent, Metabolic syndrome, Chronic Obstructive Airway Disease, Pneumonia and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Linoleic acid

MeSH term MeSH ID Detail
Acute Coronary Syndrome D054058 11 associated lipids
Renal Insufficiency, Chronic D051436 9 associated lipids
Atherosclerosis D050197 85 associated lipids
Genetic Diseases, X-Linked D040181 2 associated lipids
Metabolic Syndrome D024821 44 associated lipids
Coronary Restenosis D023903 10 associated lipids
Genetic Predisposition to Disease D020022 24 associated lipids
Circoviridae Infections D018173 2 associated lipids
Glucose Intolerance D018149 13 associated lipids
Community-Acquired Infections D017714 8 associated lipids
Per page 10 20 50 100 | Total 75

PubChem Associated disorders and diseases

What pathways are associated with Linoleic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Linoleic acid?

There are no associated biomedical information in the current reference collection.

What functions are associated with Linoleic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Linoleic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Linoleic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Linoleic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Linoleic acid

Download all related citations
Per page 10 20 50 100 | Total 4513
Authors Title Published Journal PubMed Link
Liu HC et al. Transcriptome changes in Polygonum multiflorum Thunb. roots induced by methyl jasmonate. 2015 J Zhejiang Univ Sci B pmid:26642186
Grevengoed TJ et al. Acyl-CoA synthetase 1 deficiency alters cardiolipin species and impairs mitochondrial function. 2015 J. Lipid Res. pmid:26136511
Salazar MO et al. A thin-layer chromatography autographic method for the detection of inhibitors of the Salmonella PhoP-PhoQ regulatory system. 2014 Mar-Apr Phytochem Anal pmid:24185747
Jacob RH et al. Phenotypic characterisation of colour stability of lamb meat. 2014 Meat Sci. pmid:23415827
Petzinger C et al. Lipid metabolic dose response to dietary alpha-linolenic acid in monk parrot (Myiopsitta monachus). 2014 Lipids pmid:24293226
Purushothaman D et al. Flaxseed oil supplementation alters the expression of inflammatory-related genes in dogs. 2014 Genet. Mol. Res. pmid:25078588
van Schalkwijk DB et al. Dietary medium chain fatty acid supplementation leads to reduced VLDL lipolysis and uptake rates in comparison to linoleic acid supplementation. 2014 PLoS ONE pmid:25049048
Beavers WN et al. ω-Alkynyl lipid surrogates for polyunsaturated fatty acids: free radical and enzymatic oxidations. 2014 J. Am. Chem. Soc. pmid:25034362
Shimamoto C et al. Functional characterization of FABP3, 5 and 7 gene variants identified in schizophrenia and autism spectrum disorder and mouse behavioral studies. 2014 Hum. Mol. Genet. pmid:25027319
Hellstrand S et al. Genetic variation in FADS1 has little effect on the association between dietary PUFA intake and cardiovascular disease. 2014 J. Nutr. pmid:25008580
Morris JB et al. Flavonol content, oil%, and fatty acid composition variability in seeds of Teramnus labialis and T. uncinatus accessions with nutraceutical potential. 2014 J Diet Suppl pmid:25054688
Asselin C et al. Circulating levels of linoleic acid and HDL-cholesterol are major determinants of 4-hydroxynonenal protein adducts in patients with heart failure. 2014 Redox Biol pmid:24494189
Sarath Josh MK et al. Phthalates efficiently bind to human peroxisome proliferator activated receptor and retinoid X receptor α, β, γ subtypes: an in silico approach. 2014 J Appl Toxicol pmid:23843199
Choque B et al. Linoleic acid: between doubts and certainties. 2014 Biochimie pmid:23900039
Shimizu N et al. De novo biosynthesis of linoleic acid and its conversion to the hydrocarbon (Z,Z)-6,9-heptadecadiene in the astigmatid mite, Carpoglyphus lactis: incorporation experiments with 13C-labeled glucose. 2014 Insect Biochem. Mol. Biol. pmid:24333472
Chevrot M et al. Obesity interferes with the orosensory detection of long-chain fatty acids in humans. 2014 Am. J. Clin. Nutr. pmid:24522446
Cho Y et al. Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation. 2014 Exp. Biol. Med. (Maywood) pmid:24495951
Shen J et al. A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. 2014 J. Exp. Bot. pmid:24453226
Canetti L et al. Linoleic and alpha linolenic acids ameliorate streptozotocin-induced diabetes in mice. 2014 Arch. Physiol. Biochem. pmid:24320056
Paulsen SJ et al. Expression of the fatty acid receptor GPR120 in the gut of diet-induced-obese rats and its role in GLP-1 secretion. 2014 PLoS ONE pmid:24520357