Linoelaidic acid

Linoelaidic acid is a lipid of Fatty Acyls (FA) class. Linoelaidic acid is associated with abnormalities such as Obesity, Diabetes Mellitus, Non-Insulin-Dependent, Pneumonia, Chronic Obstructive Airway Disease and Metabolic syndrome. The involved functions are known as Metabolic Inhibition, Steroid biosynthesis, Signal Transduction, Insulin Resistance and Inflammation. Linoelaidic acid often locates in Mitochondria, Membrane and Cytoplasmic matrix. The associated genes with Linoelaidic acid are FFAR1 gene, C9orf7 gene, TNF gene, CCL2 gene and TLR4 gene. The related lipids are Fatty Acids, octadecadienoic acid, Steroids, methyl linoleate and Cyanoketone.

Cross Reference

Introduction

To understand associated biological information of Linoelaidic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Linoelaidic acid?

Linoelaidic acid is suspected in Obesity, Diabetes Mellitus, Non-Insulin-Dependent, Pneumonia, Chronic Obstructive Airway Disease, Metabolic syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Linoelaidic acid

MeSH term MeSH ID Detail
Cicatrix, Hypertrophic D017439 4 associated lipids
Varicose Ulcer D014647 4 associated lipids
Lactose Intolerance D007787 2 associated lipids
Gastroschisis D020139 1 associated lipids
Fat Necrosis D005218 1 associated lipids
Mucositis D052016 7 associated lipids
Child Nutrition Disorders D015362 1 associated lipids
Carcinoma, Krebs 2 D002287 1 associated lipids
Per page 10 20 50 100 | Total 198

PubChem Associated disorders and diseases

What pathways are associated with Linoelaidic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Linoelaidic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Linoelaidic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Linoelaidic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Linoelaidic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Linoelaidic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Linoelaidic acid

Download all related citations
Per page 10 20 50 100 | Total 5580
Authors Title Published Journal PubMed Link
Ressurreição M et al. Sensory Protein Kinase Signaling in Schistosoma mansoni Cercariae: Host Location and Invasion. 2015 J. Infect. Dis. pmid:26401028
Delmastro-Greenwood M et al. Nitrite and nitrate-dependent generation of anti-inflammatory fatty acid nitroalkenes. 2015 Free Radic. Biol. Med. pmid:26385079
Alvarruiz A et al. Quality and Composition of Virgin Olive Oil from Varietties Grown in Castilla-La Mancha (Spain). 2015 J Oleo Sci pmid:26369595
Frenzel E et al. α1-Antitrypsin Combines with Plasma Fatty Acids and Induces Angiopoietin-like Protein 4 Expression. 2015 J. Immunol. pmid:26363050
Mizuta K et al. Novel identification of the free fatty acid receptor FFAR1 that promotes contraction in airway smooth muscle. 2015 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:26342087
Lands B Omega-3 PUFAs Lower the Propensity for Arachidonic Acid Cascade Overreactions. 2015 Biomed Res Int pmid:26301244
He J et al. Correlation of polyunsaturated fatty acids with the cold adaptation of Rhodotorula glutinis. 2015 Yeast pmid:26284451
Valenzuela R et al. Modification of Docosahexaenoic Acid Composition of Milk from Nursing Women Who Received Alpha Linolenic Acid from Chia Oil during Gestation and Nursing. 2015 Nutrients pmid:26247968
Mansour AB et al. Effect of agricultural sites on differentiation between Chemlali and Neb Jmel olive oils. 2015 J Oleo Sci pmid:25833451
Alnaseri H et al. Inducible Expression of a Resistance-Nodulation-Division-Type Efflux Pump in Staphylococcus aureus Provides Resistance to Linoleic and Arachidonic Acids. 2015 J. Bacteriol. pmid:25802299
Chen S et al. Profiling of volatile compounds and associated gene expression and enzyme activity during fruit development in two cucumber cultivars. 2015 PLoS ONE pmid:25799542
Manosalva C et al. Cloning, identification and functional characterization of bovine free fatty acid receptor-1 (FFAR1/GPR40) in neutrophils. 2015 PLoS ONE pmid:25790461
Xing J et al. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods. 2015 PLoS ONE pmid:25789875
Saccenti E et al. Strategies for individual phenotyping of linoleic and arachidonic acid metabolism using an oral glucose tolerance test. 2015 PLoS ONE pmid:25786212
Yoshida Y et al. Chemistry of lipid peroxidation products and their use as biomarkers in early detection of diseases. 2015 J Oleo Sci pmid:25766928
Ciepiela P et al. Arachidonic and linoleic acid derivatives impact oocyte ICSI fertilization--a prospective analysis of follicular fluid and a matched oocyte in a 'one follicle--one retrieved oocyte--one resulting embryo' investigational setting. 2015 PLoS ONE pmid:25763593
Hernandez LR et al. Effect of plant growth regulators on fatty acids composition in Jatropha curcas L. callus culture. 2015 J Oleo Sci pmid:25757437
Kotani K et al. Enzymatic preparation of human milk fat substitutes and their oxidation stability. 2015 J Oleo Sci pmid:25757431
Guo Q et al. Impact of additives on thermally-induced trans isomers in 9c,12c linoleic acid triacylglycerol. 2015 Food Chem pmid:25529684
Hashim RB et al. Fatty acid compositions of silver catfish, Pangasius sp. farmed in several rivers of Pahang, Malaysia. 2015 J Oleo Sci pmid:25748380
Chan BC et al. Combating against methicillin-resistant Staphylococcus aureus - two fatty acids from Purslane (Portulaca oleracea L.) exhibit synergistic effects with erythromycin. 2015 J. Pharm. Pharmacol. pmid:25212982
Fala AM et al. Unsaturated fatty acids as high-affinity ligands of the C-terminal Per-ARNT-Sim domain from the Hypoxia-inducible factor 3α. 2015 Sci Rep pmid:26237540
Pruzanski W et al. Diverse activity of human secretory phospholipases A2 on the migration of human vascular smooth muscle cells. 2015 Inflamm. Res. pmid:25999087
Zeb A and Ullah S Sea buckthorn seed oil protects against the oxidative stress produced by thermally oxidized lipids. 2015 Food Chem pmid:25976784
Beam J et al. Excess Linoleic Acid Increases Collagen I/III Ratio and "Stiffens" the Heart Muscle Following High Fat Diets. 2015 J. Biol. Chem. pmid:26240151
Salazar MO et al. A thin-layer chromatography autographic method for the detection of inhibitors of the Salmonella PhoP-PhoQ regulatory system. 2014 Mar-Apr Phytochem Anal pmid:24185747
Fritsche KL Linoleic acid, vegetable oils & inflammation. 2014 Jan-Feb Mo Med pmid:24645297
Armstrong EH et al. Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor β/δ (FABP5-PPARβ/δ) signaling pathway. 2014 J. Biol. Chem. pmid:24692551
Petzinger C et al. Lipid metabolic dose response to dietary alpha-linolenic acid in monk parrot (Myiopsitta monachus). 2014 Lipids pmid:24293226
Mesti T et al. Metabolic impact of anti-angiogenic agents on U87 glioma cells. 2014 PLoS ONE pmid:24922514
Herchi W et al. Flaxseed hull: Chemical composition and antioxidant activity during development. 2014 J Oleo Sci pmid:24919478
Woyda-Ploszczyca AM and Jarmuszkiewicz W Different effects of guanine nucleotides (GDP and GTP) on protein-mediated mitochondrial proton leak. 2014 PLoS ONE pmid:24904988
Maruyama H et al. Linoleate appears to protect against palmitate-induced inflammation in Huh7 cells. 2014 Lipids Health Dis pmid:24885871
Nosaka S and Miyazawa M Characterization of volatile components and odor-active compounds in the oil of edible mushroom Boletopsis leucomelas. 2014 J Oleo Sci pmid:24881770
Morris JB et al. Flavonol content, oil%, and fatty acid composition variability in seeds of Teramnus labialis and T. uncinatus accessions with nutraceutical potential. 2014 J Diet Suppl pmid:25054688
Arcan I and YemenicioÄŸlu A Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds. 2014 J. Agric. Food Chem. pmid:25025594
Negrini R et al. Influence of electrostatic interactions on the release of charged molecules from lipid cubic phases. 2014 Langmuir pmid:24673189
Arfaoui MO et al. Variation in oil content, fatty acid and phytosterols profile of Onopordum acanthium L. during seed development. 2014 Nat. Prod. Res. pmid:25103576
Garrel G et al. Unsaturated fatty acids disrupt Smad signaling in gonadotrope cells leading to inhibition of FSHβ gene expression. 2014 Endocrinology pmid:24248462
Kim JY et al. Role of moisture on the lipid oxidation determined by D(2)O in a linoleic acid model system. 2014 Food Chem pmid:24176324
Usami A et al. Characteristic odorants from bailingu oyster mushroom (Pleurotus eryngii var. tuoliensis) and summer oyster mushroom (Pleurotus cystidiosus). 2014 J Oleo Sci pmid:24919476
Sponton OE et al. Effect of limited enzymatic hydrolysis on linoleic acid binding properties of β-lactoglobulin. 2014 Food Chem pmid:24176383
Larsson N et al. Lipid mediator profiles differ between lung compartments in asthmatic and healthy humans. 2014 Eur. Respir. J. pmid:24036245
Yang Q et al. Anti-thrombotic effects of α-linolenic acid isolated from Zanthoxylum bungeanum Maxim seeds. 2014 BMC Complement Altern Med pmid:25252789
Shimizu N et al. De novo biosynthesis of linoleic acid and its conversion to the hydrocarbon (Z,Z)-6,9-heptadecadiene in the astigmatid mite, Carpoglyphus lactis: incorporation experiments with 13C-labeled glucose. 2014 Insect Biochem. Mol. Biol. pmid:24333472
Youn K et al. Oleic acid and linoleic acid from Tenebrio molitor larvae inhibit BACE1 activity in vitro: molecular docking studies. 2014 J Med Food pmid:24548007
Ambrozova JV et al. Influence of extractive solvents on lipid and fatty acids content of edible freshwater algal and seaweed products, the green Microalga Chlorella kessleri and the Cyanobacterium Spirulina platensis. 2014 Molecules pmid:24566307
Bazongo P et al. Characteristics, composition and oxidative stability of Lannea microcarpa seed and seed oil. 2014 Molecules pmid:24566330
Kwon B et al. Oleate prevents palmitate-induced mitochondrial dysfunction, insulin resistance and inflammatory signaling in neuronal cells. 2014 Biochim. Biophys. Acta pmid:24732014
Breiden B and Sandhoff K The role of sphingolipid metabolism in cutaneous permeability barrier formation. 2014 Biochim. Biophys. Acta pmid:23954553