Linoelaidic acid

Linoelaidic acid is a lipid of Fatty Acyls (FA) class. Linoelaidic acid is associated with abnormalities such as Obesity, Diabetes Mellitus, Non-Insulin-Dependent, Pneumonia, Chronic Obstructive Airway Disease and Metabolic syndrome. The involved functions are known as Metabolic Inhibition, Steroid biosynthesis, Signal Transduction, Insulin Resistance and Inflammation. Linoelaidic acid often locates in Mitochondria, Membrane and Cytoplasmic matrix. The associated genes with Linoelaidic acid are FFAR1 gene, C9orf7 gene, TNF gene, CCL2 gene and TLR4 gene. The related lipids are Fatty Acids, octadecadienoic acid, Steroids, methyl linoleate and Cyanoketone.

Cross Reference

Introduction

To understand associated biological information of Linoelaidic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Linoelaidic acid?

Linoelaidic acid is suspected in Obesity, Diabetes Mellitus, Non-Insulin-Dependent, Pneumonia, Chronic Obstructive Airway Disease, Metabolic syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Linoelaidic acid

MeSH term MeSH ID Detail
Ventricular Fibrillation D014693 16 associated lipids
Malabsorption Syndromes D008286 16 associated lipids
Diabetic Ketoacidosis D016883 16 associated lipids
Pulmonary Disease, Chronic Obstructive D029424 16 associated lipids
Olfaction Disorders D000857 17 associated lipids
Carcinoma D002277 18 associated lipids
Refsum Disease D012035 19 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Brain Edema D001929 20 associated lipids
Heart Defects, Congenital D006330 20 associated lipids
Tuberculosis D014376 20 associated lipids
Parkinsonian Disorders D020734 20 associated lipids
Dermatitis, Allergic Contact D017449 20 associated lipids
Diabetic Angiopathies D003925 20 associated lipids
Helicobacter Infections D016481 21 associated lipids
Cachexia D002100 21 associated lipids
Malaria, Falciparum D016778 22 associated lipids
Hyperlipoproteinemia Type II D006938 22 associated lipids
Neoplasms, Hormone-Dependent D009376 23 associated lipids
Birth Weight D001724 23 associated lipids
Cholestasis D002779 23 associated lipids
Pulmonary Edema D011654 23 associated lipids
Hypoxia D000860 23 associated lipids
Genetic Predisposition to Disease D020022 24 associated lipids
Stomach Neoplasms D013274 24 associated lipids
Cattle Diseases D002418 24 associated lipids
Breast Neoplasms D001943 24 associated lipids
Pseudomonas Infections D011552 25 associated lipids
Ascites D001201 25 associated lipids
Lipid Metabolism, Inborn Errors D008052 26 associated lipids
Alcoholism D000437 27 associated lipids
Gastrointestinal Hemorrhage D006471 27 associated lipids
Gastritis D005756 27 associated lipids
Endotoxemia D019446 27 associated lipids
Mammary Neoplasms, Animal D015674 27 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Vitamin E Deficiency D014811 29 associated lipids
Kidney Diseases D007674 29 associated lipids
Endometrial Neoplasms D016889 30 associated lipids
Proteinuria D011507 30 associated lipids
Dermatitis D003872 30 associated lipids
Liver Diseases D008107 31 associated lipids
Hypertension, Pulmonary D006976 32 associated lipids
Micronuclei, Chromosome-Defective D048629 33 associated lipids
Hyperplasia D006965 34 associated lipids
Acne Vulgaris D000152 35 associated lipids
Glomerulonephritis D005921 35 associated lipids
Heart Failure D006333 36 associated lipids
Diabetic Retinopathy D003930 39 associated lipids
Arrhythmias, Cardiac D001145 42 associated lipids
Per page 10 20 50 100 | Total 198

PubChem Associated disorders and diseases

What pathways are associated with Linoelaidic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Linoelaidic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Linoelaidic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Linoelaidic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Linoelaidic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Linoelaidic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Linoelaidic acid

Download all related citations
Per page 10 20 50 100 | Total 5580
Authors Title Published Journal PubMed Link
CHRISTAKIS GJ et al. EFFECT OF A SERUM CHOLESTEROL-LOWERING DIET ON COMPOSITION OF DEPOT FAT IN MAN. 1965 Am. J. Clin. Nutr. pmid:14253897
ZUKEL MC FAT-CONTROLLED DIETS. 1965 Am. J. Clin. Nutr. pmid:14253901
Brynes AE et al. Diet-induced change in fatty acid composition of plasma triacylglycerols is not associated with change in glucagon-like peptide 1 or insulin sensitivity in people with type 2 diabetes. 2000 Am. J. Clin. Nutr. pmid:11063437
Higdon JV et al. Supplementation of postmenopausal women with fish oil rich in eicosapentaenoic acid and docosahexaenoic acid is not associated with greater in vivo lipid peroxidation compared with oils rich in oleate and linoleate as assessed by plasma malondialdehyde and F(2)-isoprostanes. 2000 Am. J. Clin. Nutr. pmid:10966889
Tokede OA et al. Plasma phospholipid trans fatty acids and risk of heart failure. 2013 Am. J. Clin. Nutr. pmid:23446892
Bjerve KS et al. Alpha-linolenic acid deficiency in man: effect of ethyl linolenate on plasma and erythrocyte fatty acid composition and biosynthesis of prostanoids. 1987 Am. J. Clin. Nutr. pmid:3310599
Kark JD et al. Adipose tissue n-6 fatty acids and acute myocardial infarction in a population consuming a diet high in polyunsaturated fatty acids. 2003 Am. J. Clin. Nutr. pmid:12663274
Djoussé L et al. Dietary linolenic acid and carotid atherosclerosis: the National Heart, Lung, and Blood Institute Family Heart Study. 2003 Am. J. Clin. Nutr. pmid:12663278
Louheranta AM et al. Linoleic acid intake and susceptibility of very-low-density and low density lipoproteins to oxidation in men. 1996 Am. J. Clin. Nutr. pmid:8615351
KRAUSE RF LIVER LIPIDS IN A CASE OF HYPERVITAMINOSIS A. 1965 Am. J. Clin. Nutr. pmid:14301352
van Egmond AW et al. Effect of linoleic acid intake on growth of infants with cystic fibrosis. 1996 Am. J. Clin. Nutr. pmid:8615359
Hennig B and Watkins BA Linoleic acid and linolenic acid: effect on permeability properties of cultured endothelial cell monolayers. 1989 Am. J. Clin. Nutr. pmid:2563626
Siguel E Does linoleic acid contribute to coronary artery disease? 1995 Am. J. Clin. Nutr. pmid:7840081
Innis SM and Elias SL Intakes of essential n-6 and n-3 polyunsaturated fatty acids among pregnant Canadian women. 2003 Am. J. Clin. Nutr. pmid:12540410
Vos E and Cunnane SC Alpha-linolenic acid, linoleic acid, coronary artery disease, and overall mortality. 2003 Am. J. Clin. Nutr. pmid:12540417
Gillingham LG et al. Dietary oils and FADS1-FADS2 genetic variants modulate [13C]α-linolenic acid metabolism and plasma fatty acid composition. 2013 Am. J. Clin. Nutr. pmid:23221573
O'Connell ED et al. Diet and risk factors for age-related maculopathy. 2008 Am. J. Clin. Nutr. pmid:18326611
Hayes KC The linoleic acid content of test diets must be carefully monitored in cholesterol studies. 1997 Am. J. Clin. Nutr. pmid:9094899
Hrboticky N et al. Retina fatty acid composition of piglets fed from birth with a linoleic acid-rich vegetable-oil formula for infants. 1991 Am. J. Clin. Nutr. pmid:1989416
Vedtofte MS et al. Dietary α-linolenic acid, linoleic acid, and n-3 long-chain PUFA and risk of ischemic heart disease. 2011 Am. J. Clin. Nutr. pmid:21865326
HOLMAN RT et al. ESTIMATION OF LINOLEATE INTAKE OF MEN FROM SERUM LIPID ANALYSIS. 1964 Am. J. Clin. Nutr. pmid:14142377
PINTER KG et al. FAT ABSORPTION STUDIES IN VARIOUS FORMS OF STEATORRHEA. 1964 Am. J. Clin. Nutr. pmid:14220479
Herbel BK et al. Safflower oil consumption does not increase plasma conjugated linoleic acid concentrations in humans. 1998 Am. J. Clin. Nutr. pmid:9459383
Reeves VB et al. Variations in plasma fatty acid concentrations during a one-year self-selected dietary intake study. 1984 Am. J. Clin. Nutr. pmid:6507356
Meerarani P et al. Zinc protects against apoptosis of endothelial cells induced by linoleic acid and tumor necrosis factor alpha. 2000 Am. J. Clin. Nutr. pmid:10617950
Sanders TA Polyunsaturated fatty acids in the food chain in Europe. 2000 Am. J. Clin. Nutr. pmid:10617968
Uauy R and Hoffman DR Essential fat requirements of preterm infants. 2000 Am. J. Clin. Nutr. pmid:10617979
Kinsella JE et al. Metabolism of trans fatty acids with emphasis on the effects of trans, trans-octadecadienoate on lipid composition, essential fatty acid, and prostaglandins: an overview. 1981 Am. J. Clin. Nutr. pmid:6794350
Gibson RA and Makrides M n-3 polyunsaturated fatty acid requirements of term infants. 2000 Am. J. Clin. Nutr. pmid:10617980
Crawford M Placental delivery of arachidonic and docosahexaenoic acids: implications for the lipid nutrition of preterm infants. 2000 Am. J. Clin. Nutr. pmid:10617983
Adam O and Wolfram G Effect of different linoleic acid intakes on prostaglandin biosynthesis and kidney function in man. 1984 Am. J. Clin. Nutr. pmid:6486083
Dutta-Roy AK Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta. 2000 Am. J. Clin. Nutr. pmid:10617989
Ziboh VA et al. Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: generation of antiinflammatory and antiproliferative metabolites. 2000 Am. J. Clin. Nutr. pmid:10617998
Horrobin DF Essential fatty acid metabolism and its modification in atopic eczema. 2000 Am. J. Clin. Nutr. pmid:10617999
Weaver BJ et al. Dietary canola oil: effect on the accumulation of eicosapentaenoic acid in the alkenylacyl fraction of human platelet ethanolamine phosphoglyceride. 1990 Am. J. Clin. Nutr. pmid:2181858
SINGLETON WS CHARACTERIZED OILS FOR USE IN INTRAVENOUS FAT EMULSIONS. 1965 Am. J. Clin. Nutr. pmid:14262113
Jiang J et al. Relation between the intake of milk fat and the occurrence of conjugated linoleic acid in human adipose tissue. 1999 Am. J. Clin. Nutr. pmid:10393134
Hodgson JM et al. Can linoleic acid contribute to coronary artery disease? 1993 Am. J. Clin. Nutr. pmid:8192728
Truswell AS Can linoleic acid contribute to coronary artery disease? 1994 Am. J. Clin. Nutr. pmid:8198070
James MJ et al. Simple relationships exist between dietary linoleate and the n-6 fatty acids of human neutrophils and plasma. 1993 Am. J. Clin. Nutr. pmid:8379505
Innis SM and Hansen JW Plasma fatty acid responses, metabolic effects, and safety of microalgal and fungal oils rich in arachidonic and docosahexaenoic acids in healthy adults. 1996 Am. J. Clin. Nutr. pmid:8694015
Reaven P et al. Feasibility of using an oleate-rich diet to reduce the susceptibility of low-density lipoprotein to oxidative modification in humans. 1991 Am. J. Clin. Nutr. pmid:1897476
Cosgrove MC et al. Dietary nutrient intakes and skin-aging appearance among middle-aged American women. 2007 Am. J. Clin. Nutr. pmid:17921406
Iacono JM and Dougherty RM Lack of effect of linoleic acid on the high-density-lipoprotein-cholesterol fraction of plasma lipoproteins. 1991 Am. J. Clin. Nutr. pmid:1900384
Jones PJ et al. Whole body oxidation of dietary fatty acids: implications for energy utilization. 1985 Am. J. Clin. Nutr. pmid:3933323
Thijssen MA and Mensink RP Small differences in the effects of stearic acid, oleic acid, and linoleic acid on the serum lipoprotein profile of humans. 2005 Am. J. Clin. Nutr. pmid:16155261
Warensjö E et al. Factor analysis of fatty acids in serum lipids as a measure of dietary fat quality in relation to the metabolic syndrome in men. 2006 Am. J. Clin. Nutr. pmid:16895896
Freese R et al. High intakes of vegetables, berries, and apples combined with a high intake of linoleic or oleic acid only slightly affect markers of lipid peroxidation and lipoprotein metabolism in healthy subjects. 2002 Am. J. Clin. Nutr. pmid:12399265
Blasbalg TL et al. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. 2011 Am. J. Clin. Nutr. pmid:21367944
Asciutti-Moura LS et al. Fatty acid composition of serum lipids and its relation to diet in an elderly institutionalized population. 1988 Am. J. Clin. Nutr. pmid:3421207
Terpstra AH Effect of conjugated linoleic acid on body composition and plasma lipids in humans: an overview of the literature. 2004 Am. J. Clin. Nutr. pmid:14985207
Rose DP Effects of dietary fatty acids on breast and prostate cancers: evidence from in vitro experiments and animal studies. 1997 Am. J. Clin. Nutr. pmid:9394709
Salem N and Kuratko CN Lack of evidence for increased α-linolenic acid metabolism in vegetarians. 2011 Am. J. Clin. Nutr. pmid:21430120
Ip C Review of the effects of trans fatty acids, oleic acid, n-3 polyunsaturated fatty acids, and conjugated linoleic acid on mammary carcinogenesis in animals. 1997 Am. J. Clin. Nutr. pmid:9394710
Willett WC Specific fatty acids and risks of breast and prostate cancer: dietary intake. 1997 Am. J. Clin. Nutr. pmid:9394715
Djoussé L et al. Relation between dietary linolenic acid and coronary artery disease in the National Heart, Lung, and Blood Institute Family Heart Study. 2001 Am. J. Clin. Nutr. pmid:11684529
Goyens PL et al. Conversion of alpha-linolenic acid in humans is influenced by the absolute amounts of alpha-linolenic acid and linoleic acid in the diet and not by their ratio. 2006 Am. J. Clin. Nutr. pmid:16825680
Abbey M et al. Oxidation of low-density lipoproteins: intraindividual variability and the effect of dietary linoleate supplementation. 1993 Am. J. Clin. Nutr. pmid:8438773
Venäläinen TM et al. Effect of a 2-y dietary and physical activity intervention on plasma fatty acid composition and estimated desaturase and elongase activities in children: the Physical Activity and Nutrition in Children Study. 2016 Am. J. Clin. Nutr. pmid:27581473
Almario RU et al. Effects of walnut consumption on plasma fatty acids and lipoproteins in combined hyperlipidemia. 2001 Am. J. Clin. Nutr. pmid:11451720
Makrides M et al. Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. 1994 Am. J. Clin. Nutr. pmid:7913291
Shultz TD and Leklem JE Selenium status of vegeterians, nonvegetarians, and hormone-dependent cancer subjects. 1983 Am. J. Clin. Nutr. pmid:6849273
Larbi A et al. Acute in vivo elevation of intravascular triacylglycerol lipolysis impairs peripheral T cell activation in humans. 2005 Am. J. Clin. Nutr. pmid:16280424
OLSON FE et al. The use of diets containing large amounts of linoleic acid. 1958 Nov-Dec Am. J. Clin. Nutr. pmid:13594895
Mahendran Y et al. Association of erythrocyte membrane fatty acids with changes in glycemia and risk of type 2 diabetes. 2014 Am. J. Clin. Nutr. pmid:24153340
Nestel PJ et al. Effect of a stearic acid-rich, structured triacylglycerol on plasma lipid concentrations. 1998 Am. J. Clin. Nutr. pmid:9846846
Hodge AM et al. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. 2007 Am. J. Clin. Nutr. pmid:17616780
Yary T et al. Serum n-6 polyunsaturated fatty acids, Δ5- and Δ6-desaturase activities, and risk of incident type 2 diabetes in men: the Kuopio Ischaemic Heart Disease Risk Factor Study. 2016 Am. J. Clin. Nutr. pmid:27009754
Martinez GA et al. Nutrient intakes of American infants and children fed cow's milk or infant formula. 1985 Am. J. Dis. Child. pmid:4036886
BAUGHAN MA et al. TIME, TEMPERATURE EXPOSURE TO AIR OF MILK PREPARATIONS. EFFECT ON FATTY ACIDS. 1963 Am. J. Dis. Child. pmid:14063701
van Staveren WA et al. Validity of the fatty acid composition of subcutaneous fat tissue microbiopsies as an estimate of the long-term average fatty acid composition of the diet of separate individuals. 1986 Am. J. Epidemiol. pmid:3946391
Andersen LF et al. Evaluation of a food frequency questionnaire with weighed records, fatty acids, and alpha-tocopherol in adipose tissue and serum. 1999 Am. J. Epidemiol. pmid:10400557
Seidell JC et al. Polyunsaturated fatty acids in adipose tissue in European men aged 38 years in relation to serum lipids, smoking habits, and fat distribution. 1991 Am. J. Epidemiol. pmid:1951263
Jacobsen BK et al. Re: "Comparison of measures of fatty acid intake by subcutaneous fat aspirate, food frequency questionnaire, and diet records in a free-living population of US men". 1993 Am. J. Epidemiol. pmid:8333420
Brosnan MJ and Carkner RD Hepatic effects of a fructose diet in the stroke-prone spontaneously hypertensive rat. 2008 Am. J. Hypertens. pmid:18437120
Zhang HY et al. A high sucrose, high linoleic acid diet potentiates hypertension in the Dahl salt sensitive rat. 1999 Am. J. Hypertens. pmid:10090346
Taylor EN et al. Fatty acid intake and incident nephrolithiasis. 2005 Am. J. Kidney Dis. pmid:15685503
Ascherio A Epidemiologic studies on dietary fats and coronary heart disease. 2002 Am. J. Med. pmid:12566133
Weiss LA et al. The omega-6 fatty acid linoleic acid is associated with risk of gastroschisis: a novel dietary risk factor. 2012 Am. J. Med. Genet. A pmid:22315197
SCHWARTZ S et al. LIPID THROMBOPLASTINS AND MYOCARDIAL INFARCTION. 1965 Am. J. Med. Sci. pmid:14254823
Brush MG et al. Abnormal essential fatty acid levels in plasma of women with premenstrual syndrome. 1984 Am. J. Obstet. Gynecol. pmid:6091462
Kääpä P et al. Dietary fatty acids and platelet thromboxane production in puerperal women and their offspring. 1986 Am. J. Obstet. Gynecol. pmid:3089014
MacKenzie LW et al. Prostacyclin biosynthesis by cultured human myometrial smooth muscle cells: dependency on arachidonic or linoleic acid in the culture medium. 1988 Am. J. Obstet. Gynecol. pmid:3144917
Vaughan JE and Walsh SW Neutrophils from pregnant women produce thromboxane and tumor necrosis factor-alpha in response to linoleic acid and oxidative stress. 2005 Am. J. Obstet. Gynecol. pmid:16150282
Liu H et al. Transient receptor potential vanilloid 1 gene deficiency ameliorates hepatic injury in a mouse model of chronic binge alcohol-induced alcoholic liver disease. 2015 Am. J. Pathol. pmid:25447051
McEntee MF et al. Dietary n-3 polyunsaturated fatty acids enhance hormone ablation therapy in androgen-dependent prostate cancer. 2008 Am. J. Pathol. pmid:18556778
Pandey NR et al. An induction in hepatic HDL secretion associated with reduced ATPase expression. 2009 Am. J. Pathol. pmid:19717637
Thomson AB et al. A high linoleic acid diet diminishes enhanced intestinal uptake of sugars in diabetic rats. 1987 Am. J. Physiol. pmid:3826353
Düsing R et al. Dietary linoleic acid deprivation: effects on blood pressure and PGI2 synthesis. 1983 Am. J. Physiol. pmid:6337507
Murray MJ et al. Effects of endotoxin on pigs prefed omega-3 vs. omega-6 fatty acid-enriched diets. 1993 Am. J. Physiol. pmid:8279548
West DB et al. Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. 1998 Am. J. Physiol. pmid:9728060
Jensen MD et al. Measurement of non-steady-state free fatty acid turnover. 1990 Am. J. Physiol. pmid:2405695
ERWIN ES and STERNER W DIETARY LIPIDS AND FATTY ACID DEPOSITION IN VARIOUS CALF TISSUES. 1963 Am. J. Physiol. pmid:14084975
WILSON JD Relation between dietary cholesterol and bile acid excretion in the rat. 1962 Am. J. Physiol. pmid:14001040
Nilsson A et al. Absorption and lymphatic transport of exogenous and endogenous arachidonic and linoleic acid in the rat. 1987 Am. J. Physiol. pmid:3109253
Liu F et al. Permeability properties of monolayers of the human trophoblast cell line BeWo. 1997 Am. J. Physiol. pmid:9374645
Guidot DM et al. Modulating phosphatidic acid metabolism decreases oxidative injury in rat lungs. 1997 Am. J. Physiol. pmid:9374722
Hjelte L et al. Absorption and metabolism of [3H]arachidonic and [14C]linoleic acid in essential fatty acid-deficient rats. 1990 Am. J. Physiol. pmid:2115302
Soliven B et al. Arachidonic acid and its metabolites increase Cai in cultured rat oligodendrocytes. 1993 Am. J. Physiol. pmid:8384786
Sebokova E et al. Modulation of receptor-mediated gonadotropin action in rat testes by dietary fat. 1988 Am. J. Physiol. pmid:2897795