Linoelaidic acid

Linoelaidic acid is a lipid of Fatty Acyls (FA) class. Linoelaidic acid is associated with abnormalities such as Obesity, Diabetes Mellitus, Non-Insulin-Dependent, Pneumonia, Chronic Obstructive Airway Disease and Metabolic syndrome. The involved functions are known as Metabolic Inhibition, Steroid biosynthesis, Signal Transduction, Insulin Resistance and Inflammation. Linoelaidic acid often locates in Mitochondria, Membrane and Cytoplasmic matrix. The associated genes with Linoelaidic acid are FFAR1 gene, C9orf7 gene, TNF gene, CCL2 gene and TLR4 gene. The related lipids are Fatty Acids, octadecadienoic acid, Steroids, methyl linoleate and Cyanoketone.

Cross Reference

Introduction

To understand associated biological information of Linoelaidic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Linoelaidic acid?

Linoelaidic acid is suspected in Obesity, Diabetes Mellitus, Non-Insulin-Dependent, Pneumonia, Chronic Obstructive Airway Disease, Metabolic syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Linoelaidic acid

MeSH term MeSH ID Detail
Esophagitis, Peptic D004942 4 associated lipids
Cicatrix, Hypertrophic D017439 4 associated lipids
Biliary Atresia D001656 4 associated lipids
Epilepsy, Temporal Lobe D004833 4 associated lipids
Varicose Ulcer D014647 4 associated lipids
Pregnancy Complications, Neoplastic D011252 4 associated lipids
Melanosis D008548 4 associated lipids
Varicocele D014646 4 associated lipids
Embolism, Fat D004620 4 associated lipids
Sigmoid Neoplasms D012811 5 associated lipids
Per page 10 20 50 100 | Total 198

PubChem Associated disorders and diseases

What pathways are associated with Linoelaidic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Linoelaidic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Linoelaidic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Linoelaidic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Linoelaidic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Linoelaidic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Linoelaidic acid

Download all related citations
Per page 10 20 50 100 | Total 5580
Authors Title Published Journal PubMed Link
Reed S et al. Dietary zinc deficiency affects blood linoleic acid: dihomo-γ-linolenic acid (LA:DGLA) ratio; a sensitive physiological marker of zinc status in vivo (Gallus gallus). 2014 Nutrients pmid:24658588
Jacob RH et al. Phenotypic characterisation of colour stability of lamb meat. 2014 Meat Sci. pmid:23415827
Hodson L et al. Plasma and erythrocyte fatty acids reflect intakes of saturated and n-6 PUFA within a similar time frame. 2014 J. Nutr. pmid:24225449
Purushothaman D et al. Flaxseed oil supplementation alters the expression of inflammatory-related genes in dogs. 2014 Genet. Mol. Res. pmid:25078588
van Schalkwijk DB et al. Dietary medium chain fatty acid supplementation leads to reduced VLDL lipolysis and uptake rates in comparison to linoleic acid supplementation. 2014 PLoS ONE pmid:25049048
Wright CR and Setzer WN Chemical composition of volatiles from Opuntia littoralis, Opuntia ficus-indica, and Opuntia prolifera growing on Catalina Island, California. 2014 Nat. Prod. Res. pmid:24354326
Yavin E et al. Metabolic conversion of intra-amniotically-injected deuterium-labeled essential fatty acids by fetal rats following maternal n-3 fatty acid deficiency. 2014 Biochim. Biophys. Acta pmid:24960100
Shen J et al. A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. 2014 J. Exp. Bot. pmid:24453226
Mulligan CM et al. Inhibition of delta-6 desaturase reverses cardiolipin remodeling and prevents contractile dysfunction in the aged mouse heart without altering mitochondrial respiratory function. 2014 J. Gerontol. A Biol. Sci. Med. Sci. pmid:24418793
Mahendran Y et al. Association of erythrocyte membrane fatty acids with changes in glycemia and risk of type 2 diabetes. 2014 Am. J. Clin. Nutr. pmid:24153340