Linoelaidic acid

Linoelaidic acid is a lipid of Fatty Acyls (FA) class. Linoelaidic acid is associated with abnormalities such as Obesity, Diabetes Mellitus, Non-Insulin-Dependent, Pneumonia, Chronic Obstructive Airway Disease and Metabolic syndrome. The involved functions are known as Metabolic Inhibition, Steroid biosynthesis, Signal Transduction, Insulin Resistance and Inflammation. Linoelaidic acid often locates in Mitochondria, Membrane and Cytoplasmic matrix. The associated genes with Linoelaidic acid are FFAR1 gene, C9orf7 gene, TNF gene, CCL2 gene and TLR4 gene. The related lipids are Fatty Acids, octadecadienoic acid, Steroids, methyl linoleate and Cyanoketone.

Cross Reference

Introduction

To understand associated biological information of Linoelaidic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Linoelaidic acid?

Linoelaidic acid is suspected in Obesity, Diabetes Mellitus, Non-Insulin-Dependent, Pneumonia, Chronic Obstructive Airway Disease, Metabolic syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Linoelaidic acid

MeSH term MeSH ID Detail
Gastritis D005756 27 associated lipids
Gastroesophageal Reflux D005764 10 associated lipids
Glioma D005910 112 associated lipids
Glomerulonephritis D005921 35 associated lipids
Haemophilus Infections D006192 3 associated lipids
Heart Defects, Congenital D006330 20 associated lipids
Heart Failure D006333 36 associated lipids
Hemolysis D006461 131 associated lipids
Gastrointestinal Hemorrhage D006471 27 associated lipids
Hepatolenticular Degeneration D006527 3 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Hyperlipoproteinemia Type II D006938 22 associated lipids
Hyperlipidemia, Familial Combined D006950 9 associated lipids
Hyperlipoproteinemias D006951 15 associated lipids
Hyperplasia D006965 34 associated lipids
Hypersensitivity, Immediate D006969 14 associated lipids
Hypertension D006973 115 associated lipids
Hypertension, Pulmonary D006976 32 associated lipids
Hypertension, Renal D006977 9 associated lipids
Per page 10 20 50 100 | Total 198

PubChem Associated disorders and diseases

What pathways are associated with Linoelaidic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Linoelaidic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Linoelaidic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Linoelaidic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Linoelaidic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Linoelaidic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Linoelaidic acid

Download all related citations
Per page 10 20 50 100 | Total 5580
Authors Title Published Journal PubMed Link
CAMPBELL AM et al. SERUM LIPIDS OF MEN FED DIETS DIFFERING IN PROTEIN QUALITY AND LINOLEIC ACID CONTENT. 1965 Am. J. Clin. Nutr. pmid:14332349
Hennig B et al. Linoleic acid activates nuclear transcription factor-kappa B (NF-kappa B) and induces NF-kappa B-dependent transcription in cultured endothelial cells. 1996 Am. J. Clin. Nutr. pmid:8602587
Routi T et al. Effects of prospective, randomized cholesterol-lowering dietary intervention and apolipoprotein E phenotype on serum lipoprotein(a) concentrations of infants aged 7-24 mo. 1996 Am. J. Clin. Nutr. pmid:8602597
Louheranta AM et al. Linoleic acid intake and susceptibility of very-low-density and low density lipoproteins to oxidation in men. 1996 Am. J. Clin. Nutr. pmid:8615351
Martinelli N et al. FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. 2008 Am. J. Clin. Nutr. pmid:18842780
Hennig B and Watkins BA Linoleic acid and linolenic acid: effect on permeability properties of cultured endothelial cell monolayers. 1989 Am. J. Clin. Nutr. pmid:2563626
SCOTT RF et al. FATTY ACIDS OF SERUM AND ADIPOSE TISSUE IN SIX GROUPS EATING NATURAL DIETS CONTAINING 7 TO 40 PER CENT FAT. 1964 Am. J. Clin. Nutr. pmid:14157830
DeLany JP et al. Differential oxidation of individual dietary fatty acids in humans. 2000 Am. J. Clin. Nutr. pmid:11010930
Mantzioris E et al. Differences exist in the relationships between dietary linoleic and alpha-linolenic acids and their respective long-chain metabolites. 1995 Am. J. Clin. Nutr. pmid:7840069
Siguel E Does linoleic acid contribute to coronary artery disease? 1995 Am. J. Clin. Nutr. pmid:7840081
Granot E et al. Breast-fed and formula-fed infants do not differ in immunocompetent cell cytokine production despite differences in cell membrane fatty acid composition. 2000 Am. J. Clin. Nutr. pmid:11063450
Villalpando S et al. [13C]linoleic acid oxidation and transfer into milk in stunted lactating women with contrasting body mass indexes. 2001 Am. J. Clin. Nutr. pmid:11729835
Anderson GJ and Connor WE On the demonstration of omega-3 essential-fatty-acid deficiency in humans. 1989 Am. J. Clin. Nutr. pmid:2494878
Hayes KC The linoleic acid content of test diets must be carefully monitored in cholesterol studies. 1997 Am. J. Clin. Nutr. pmid:9094899
Jeppesen PB et al. Differences in essential fatty acid requirements by enteral and parenteral routes of administration in patients with fat malabsorption. 1999 Am. J. Clin. Nutr. pmid:10393142
Jannace PW et al. Effects of oral soy phosphatidylcholine on phagocytosis, arachidonate concentrations, and killing by human polymorphonuclear leukocytes. 1992 Am. J. Clin. Nutr. pmid:1323926
Decsi T et al. Long-chain polyunsaturated fatty acids in children with severe protein-energy malnutrition with and without human immunodeficiency virus-1 infection. 1995 Am. J. Clin. Nutr. pmid:7491893
Bradbury KE et al. The serum fatty acids myristic acid and linoleic acid are better predictors of serum cholesterol concentrations when measured as molecular percentages rather than as absolute concentrations. 2010 Am. J. Clin. Nutr. pmid:19955401
Del Prado M et al. Contribution of dietary and newly formed arachidonic acid to human milk lipids in women eating a low-fat diet. 2001 Am. J. Clin. Nutr. pmid:11470727
CENTURY B et al. INTERRELATIONSHIPS OF DIETARY LIPIDS UPON FATTY ACID COMPOSITION OF BRAIN MITOCHONDRIA, ERYTHROCYTES AND HEART TISSUE IN CHICKS. 1963 Am. J. Clin. Nutr. pmid:14101397
Carnielli VP et al. Medium-chain triacylglycerols in formulas for preterm infants: effect on plasma lipids, circulating concentrations of medium-chain fatty acids, and essential fatty acids. 1996 Am. J. Clin. Nutr. pmid:8694014
Vedtofte MS et al. Dietary α-linolenic acid, linoleic acid, and n-3 long-chain PUFA and risk of ischemic heart disease. 2011 Am. J. Clin. Nutr. pmid:21865326
Rioux FM and Innis SM Arachidonic acid concentrations in plasma and liver phospholipid and cholesterol esters of piglets raised on formulas with different linoleic and linolenic acid contents. 1992 Am. J. Clin. Nutr. pmid:1609747
HOLMAN RT et al. ESTIMATION OF LINOLEATE INTAKE OF MEN FROM SERUM LIPID ANALYSIS. 1964 Am. J. Clin. Nutr. pmid:14142377
Rudel LL et al. Dietary polyunsaturated fat modifies low-density lipoproteins and reduces atherosclerosis of nonhuman primates with high and low diet responsiveness. 1995 Am. J. Clin. Nutr. pmid:7625361
Meerarani P et al. Zinc protects against apoptosis of endothelial cells induced by linoleic acid and tumor necrosis factor alpha. 2000 Am. J. Clin. Nutr. pmid:10617950
Sanders TA Polyunsaturated fatty acids in the food chain in Europe. 2000 Am. J. Clin. Nutr. pmid:10617968
Baylin A et al. Adipose tissue biomarkers of fatty acid intake. 2002 Am. J. Clin. Nutr. pmid:12324287
Voorrips LE et al. Intake of conjugated linoleic acid, fat, and other fatty acids in relation to postmenopausal breast cancer: the Netherlands Cohort Study on Diet and Cancer. 2002 Am. J. Clin. Nutr. pmid:12324303
Blair IA et al. Dietary modification of omega 6 fatty acid intake and its effect on urinary eicosanoid excretion. 1993 Am. J. Clin. Nutr. pmid:8424383
Weaver BJ et al. Dietary canola oil: effect on the accumulation of eicosapentaenoic acid in the alkenylacyl fraction of human platelet ethanolamine phosphoglyceride. 1990 Am. J. Clin. Nutr. pmid:2181858
Kalivianakis M et al. Fat malabsorption in cystic fibrosis patients receiving enzyme replacement therapy is due to impaired intestinal uptake of long-chain fatty acids. 1999 Am. J. Clin. Nutr. pmid:9925134
Jiang J et al. Relation between the intake of milk fat and the occurrence of conjugated linoleic acid in human adipose tissue. 1999 Am. J. Clin. Nutr. pmid:10393134
Cosgrove MC et al. Dietary nutrient intakes and skin-aging appearance among middle-aged American women. 2007 Am. J. Clin. Nutr. pmid:17921406
Murphy J et al. Fat malabsorption in cystic fibrosis patients. 1999 Am. J. Clin. Nutr. pmid:10539762
Freese R et al. High intakes of vegetables, berries, and apples combined with a high intake of linoleic or oleic acid only slightly affect markers of lipid peroxidation and lipoprotein metabolism in healthy subjects. 2002 Am. J. Clin. Nutr. pmid:12399265
Feunekes GI et al. Relative and biomarker-based validity of a food-frequency questionnaire estimating intake of fats and cholesterol. 1993 Am. J. Clin. Nutr. pmid:8379504
Rose DP Effects of dietary fatty acids on breast and prostate cancers: evidence from in vitro experiments and animal studies. 1997 Am. J. Clin. Nutr. pmid:9394709
Djoussé L et al. Relation between dietary linolenic acid and coronary artery disease in the National Heart, Lung, and Blood Institute Family Heart Study. 2001 Am. J. Clin. Nutr. pmid:11684529
Chevrot M et al. Obesity interferes with the orosensory detection of long-chain fatty acids in humans. 2014 Am. J. Clin. Nutr. pmid:24522446
McMurchie EJ et al. Dietary-induced changes in the fatty acid composition of human cheek cell phospholipids: correlation with changes in the dietary polyunsaturated/saturated fat ratio. 1984 Am. J. Clin. Nutr. pmid:6720626
Shultz TD and Leklem JE Selenium status of vegeterians, nonvegetarians, and hormone-dependent cancer subjects. 1983 Am. J. Clin. Nutr. pmid:6849273
Cunnane SC et al. Beta-oxidation of linoleate in obese men undergoing weight loss. 2001 Am. J. Clin. Nutr. pmid:11273844
Elias SL and Innis SM Infant plasma trans, n-6, and n-3 fatty acids and conjugated linoleic acids are related to maternal plasma fatty acids, length of gestation, and birth weight and length. 2001 Am. J. Clin. Nutr. pmid:11273857
Freeman VL et al. Assessing the effect of fatty acids on prostate carcinogenesis in humans: does self-reported dietary intake rank prostatic exposure correctly? 2001 Am. J. Clin. Nutr. pmid:11273858
Merchant AT et al. Intake of n-6 and n-3 fatty acids and fish and risk of community-acquired pneumonia in US men. 2005 Am. J. Clin. Nutr. pmid:16155282
Seidelin KN et al. Percentage distribution of fatty acids in subcutaneous adipose tissue of patients with peptic ulcer disease. 1993 Am. J. Clin. Nutr. pmid:8416668
Horrobin DF Fatty acid metabolism in health and disease: the role of delta-6-desaturase. 1993 Am. J. Clin. Nutr. pmid:8386433
Mahendran Y et al. Association of erythrocyte membrane fatty acids with changes in glycemia and risk of type 2 diabetes. 2014 Am. J. Clin. Nutr. pmid:24153340
Yary T et al. Serum n-6 polyunsaturated fatty acids, Δ5- and Δ6-desaturase activities, and risk of incident type 2 diabetes in men: the Kuopio Ischaemic Heart Disease Risk Factor Study. 2016 Am. J. Clin. Nutr. pmid:27009754