Linoelaidic acid

Linoelaidic acid is a lipid of Fatty Acyls (FA) class. Linoelaidic acid is associated with abnormalities such as Obesity, Diabetes Mellitus, Non-Insulin-Dependent, Pneumonia, Chronic Obstructive Airway Disease and Metabolic syndrome. The involved functions are known as Metabolic Inhibition, Steroid biosynthesis, Signal Transduction, Insulin Resistance and Inflammation. Linoelaidic acid often locates in Mitochondria, Membrane and Cytoplasmic matrix. The associated genes with Linoelaidic acid are FFAR1 gene, C9orf7 gene, TNF gene, CCL2 gene and TLR4 gene. The related lipids are Fatty Acids, octadecadienoic acid, Steroids, methyl linoleate and Cyanoketone.

Cross Reference

Introduction

To understand associated biological information of Linoelaidic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Linoelaidic acid?

Linoelaidic acid is suspected in Obesity, Diabetes Mellitus, Non-Insulin-Dependent, Pneumonia, Chronic Obstructive Airway Disease, Metabolic syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Linoelaidic acid

MeSH term MeSH ID Detail
Gastritis D005756 27 associated lipids
Gastroesophageal Reflux D005764 10 associated lipids
Glioma D005910 112 associated lipids
Glomerulonephritis D005921 35 associated lipids
Haemophilus Infections D006192 3 associated lipids
Heart Defects, Congenital D006330 20 associated lipids
Heart Failure D006333 36 associated lipids
Hemolysis D006461 131 associated lipids
Gastrointestinal Hemorrhage D006471 27 associated lipids
Hepatolenticular Degeneration D006527 3 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Hyperlipoproteinemia Type II D006938 22 associated lipids
Hyperlipidemia, Familial Combined D006950 9 associated lipids
Hyperlipoproteinemias D006951 15 associated lipids
Hyperplasia D006965 34 associated lipids
Hypersensitivity, Immediate D006969 14 associated lipids
Hypertension D006973 115 associated lipids
Hypertension, Pulmonary D006976 32 associated lipids
Hypertension, Renal D006977 9 associated lipids
Per page 10 20 50 100 | Total 198

PubChem Associated disorders and diseases

What pathways are associated with Linoelaidic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Linoelaidic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Linoelaidic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Linoelaidic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Linoelaidic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Linoelaidic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Linoelaidic acid

Download all related citations
Per page 10 20 50 100 | Total 5580
Authors Title Published Journal PubMed Link
Armstrong EH et al. Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor β/δ (FABP5-PPARβ/δ) signaling pathway. 2014 J. Biol. Chem. pmid:24692551
Petzinger C et al. Lipid metabolic dose response to dietary alpha-linolenic acid in monk parrot (Myiopsitta monachus). 2014 Lipids pmid:24293226
Baek JH et al. Lithium tremor revisited: pathophysiology and treatment. 2014 Acta Psychiatr Scand pmid:23834617
Bagai S et al. Lipid-modified polyethylenimine-mediated DNA attraction evaluated by molecular dynamics simulations. 2014 J Phys Chem B pmid:24918771
Tang KS Protective effect of arachidonic acid and linoleic acid on 1-methyl-4-phenylpyridinium-induced toxicity in PC12 cells. 2014 Lipids Health Dis pmid:25522984
Qin G et al. Evolution of the aroma volatiles of pear fruits supplemented with fatty acid metabolic precursors. 2014 Molecules pmid:25474290
Ebrahimi M et al. Effects of oils rich in linoleic and α-linolenic acids on fatty acid profile and gene expression in goat meat. 2014 Nutrients pmid:25255382
Xu QY et al. Metabolomic analysis of simvastatin and fenofibrate intervention in high-lipid diet-induced hyperlipidemia rats. 2014 Acta Pharmacol. Sin. pmid:25220639
Herchi W et al. Flaxseed hull: Chemical composition and antioxidant activity during development. 2014 J Oleo Sci pmid:24919478
Woyda-Ploszczyca AM and Jarmuszkiewicz W Different effects of guanine nucleotides (GDP and GTP) on protein-mediated mitochondrial proton leak. 2014 PLoS ONE pmid:24904988
Maruyama H et al. Linoleate appears to protect against palmitate-induced inflammation in Huh7 cells. 2014 Lipids Health Dis pmid:24885871
Nosaka S and Miyazawa M Characterization of volatile components and odor-active compounds in the oil of edible mushroom Boletopsis leucomelas. 2014 J Oleo Sci pmid:24881770
Chilton FH et al. Diet-gene interactions and PUFA metabolism: a potential contributor to health disparities and human diseases. 2014 Nutrients pmid:24853887
Saito H and Ishikawa S Lipid classes and fatty acid profile of cultured and wild black rockfish, Sebastes schlegeli. 2014 J Oleo Sci pmid:24829130
Morris JB et al. Flavonol content, oil%, and fatty acid composition variability in seeds of Teramnus labialis and T. uncinatus accessions with nutraceutical potential. 2014 J Diet Suppl pmid:25054688
Verlotta A and Trono D Expression, purification and refolding of active durum wheat (Triticum durum Desf.) secretory phospholipase A2 from inclusion bodies of Escherichia coli. 2014 Protein Expr. Purif. pmid:24925645
Yang B et al. Synthesis of conjugated linoleic acid by the linoleate isomerase complex in food-derived lactobacilli. 2014 J. Appl. Microbiol. pmid:24750362
Mouokeu RS et al. Antifungal and antioxidant activity of Crassocephalum bauchiense (Hutch.) Milne-Redh ethyl acetate extract and fractions (Asteraceae). 2014 BMC Res Notes pmid:24742210
Buehlmann C et al. Desert ants locate food by combining high sensitivity to food odors with extensive crosswind runs. 2014 Curr. Biol. pmid:24726153
Arcan I and YemenicioÄŸlu A Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds. 2014 J. Agric. Food Chem. pmid:25025594
Buček A et al. Δ12-Fatty acid desaturase from Candida parapsilosis is a multifunctional desaturase producing a range of polyunsaturated and hydroxylated fatty acids. 2014 PLoS ONE pmid:24681902
Rodriguez MA et al. Concordance analysis between estimation methods of milk fatty acid content. 2014 Food Chem pmid:24629954
Spartano NL et al. Linoleic acid suppresses cholesterol efflux and ATP-binding cassette transporters in murine bone marrow-derived macrophages. 2014 Lipids pmid:24595513
Nehdi IA et al. Chamaerops humilis L. var. argentea André date palm seed oil: a potential dietetic plant product. 2014 J. Food Sci. pmid:24666023
Santos S et al. Fatty acids derived from a food frequency questionnaire and measured in the erythrocyte membrane in relation to adiponectin and leptin concentrations. 2014 Eur J Clin Nutr pmid:24642786
Negrini R et al. Influence of electrostatic interactions on the release of charged molecules from lipid cubic phases. 2014 Langmuir pmid:24673189
Guo HH et al. XsFAD2 gene encodes the enzyme responsible for the high linoleic acid content in oil accumulated in Xanthoceras sorbifolia seeds. 2014 J. Sci. Food Agric. pmid:23775588
Radice M et al. Chemical characterization and antioxidant activity of Amazonian (Ecuador) Caryodendron orinocense Karst. and Bactris gasipaes Kunth seed oils. 2014 J Oleo Sci pmid:25391685
Garrel G et al. Unsaturated fatty acids disrupt Smad signaling in gonadotrope cells leading to inhibition of FSHβ gene expression. 2014 Endocrinology pmid:24248462
Kim JY et al. Role of moisture on the lipid oxidation determined by D(2)O in a linoleic acid model system. 2014 Food Chem pmid:24176324
Usami A et al. Characteristic odorants from bailingu oyster mushroom (Pleurotus eryngii var. tuoliensis) and summer oyster mushroom (Pleurotus cystidiosus). 2014 J Oleo Sci pmid:24919476
Sponton OE et al. Effect of limited enzymatic hydrolysis on linoleic acid binding properties of β-lactoglobulin. 2014 Food Chem pmid:24176383
Dal Bosco A et al. Effect of dietary alfalfa on the fatty acid composition and indexes of lipid metabolism of rabbit meat. 2014 Meat Sci. pmid:24036258
Alvheim AR et al. Dietary linoleic acid elevates the endocannabinoids 2-AG and anandamide and promotes weight gain in mice fed a low fat diet. 2014 Lipids pmid:24081493
Su MH et al. Chemical composition of seed oils in native Taiwanese Camellia species. 2014 Food Chem pmid:24629982
Yang Q et al. Anti-thrombotic effects of α-linolenic acid isolated from Zanthoxylum bungeanum Maxim seeds. 2014 BMC Complement Altern Med pmid:25252789
Shimizu N et al. De novo biosynthesis of linoleic acid and its conversion to the hydrocarbon (Z,Z)-6,9-heptadecadiene in the astigmatid mite, Carpoglyphus lactis: incorporation experiments with 13C-labeled glucose. 2014 Insect Biochem. Mol. Biol. pmid:24333472
Wu MH et al. A novel sodium N-fatty acyl amino acid surfactant using silkworm pupae as stock material. 2014 Sci Rep pmid:24651079
Reiner WB et al. Fatty acids in mountain gorilla diets: implications for primate nutrition and health. 2014 Am. J. Primatol. pmid:24243235
Stoffel W et al. Obesity resistance and deregulation of lipogenesis in Δ6-fatty acid desaturase (FADS2) deficiency. 2014 EMBO Rep. pmid:24378641
González-Abuín N et al. Grape-seed procyanidins modulate cellular membrane potential and nutrient-induced GLP-1 secretion in STC-1 cells. 2014 Am. J. Physiol., Cell Physiol. pmid:24371039
Öztürk M et al. The fatty acid compositions of several plant seed oils belong to Leguminosae and Umbelliferae families. 2014 Environ Monit Assess pmid:24357269
Choi JS et al. In vivo hair growth-promoting effect of rice bran extract prepared by supercritical carbon dioxide fluid. 2014 Biol. Pharm. Bull. pmid:24389480
Ambrozova JV et al. Influence of extractive solvents on lipid and fatty acids content of edible freshwater algal and seaweed products, the green Microalga Chlorella kessleri and the Cyanobacterium Spirulina platensis. 2014 Molecules pmid:24566307
Bazongo P et al. Characteristics, composition and oxidative stability of Lannea microcarpa seed and seed oil. 2014 Molecules pmid:24566330
Kwon B et al. Oleate prevents palmitate-induced mitochondrial dysfunction, insulin resistance and inflammatory signaling in neuronal cells. 2014 Biochim. Biophys. Acta pmid:24732014
Breiden B and Sandhoff K The role of sphingolipid metabolism in cutaneous permeability barrier formation. 2014 Biochim. Biophys. Acta pmid:23954553
Darling RA et al. Mercaptoacetate and fatty acids exert direct and antagonistic effects on nodose neurons via GPR40 fatty acid receptors. 2014 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:24760994
Nardi F et al. Enhanced insulin sensitivity associated with provision of mono and polyunsaturated fatty acids in skeletal muscle cells involves counter modulation of PP2A. 2014 PLoS ONE pmid:24632852
Hall TD et al. Changes during leaf expansion of ΦPSII temperature optima in Gossypium hirsutum are associated with the degree of fatty acid lipid saturation. 2014 J. Plant Physiol. pmid:24594393