2,3-Dihydroxypropyl oleate

2,3-Dihydroxypropyl oleate is a lipid of Glycerolipids (GL) class. The involved functions are known as enzyme activity and acyltransferase activity. 2,3-dihydroxypropyl oleate often locates in soluble fraction.

Cross Reference

Introduction

To understand associated biological information of 2,3-Dihydroxypropyl oleate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2,3-Dihydroxypropyl oleate?

There are no associated biomedical information in the current reference collection.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2,3-Dihydroxypropyl oleate

PubChem Associated disorders and diseases

What pathways are associated with 2,3-Dihydroxypropyl oleate

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2,3-Dihydroxypropyl oleate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2,3-Dihydroxypropyl oleate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2,3-Dihydroxypropyl oleate?

There are no associated biomedical information in the current reference collection.

What genes are associated with 2,3-Dihydroxypropyl oleate?

There are no associated biomedical information in the current reference collection.

What common seen animal models are associated with 2,3-Dihydroxypropyl oleate?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 2,3-Dihydroxypropyl oleate

Download all related citations
Per page 10 20 50 100 | Total 520
Authors Title Published Journal PubMed Link
Yoshikawa K et al. Oscillation of electrical potential in a porous membrane doped with glycerol alpha-monooleate induced by an Na+/K+ concentration gradient. 1984 Biophys. Chem. pmid:6487742
Chernyshev A et al. Kinetic isotope effects of proton transfer in aqueous and methanol containing solutions, and in gramicidin A channels. 2003 Biophys. Chem. pmid:12568940
Heinemann SH and Sigworth FJ Open channel noise. V. Fluctuating barriers to ion entry in gramicidin A channels. 1990 Biophys. J. pmid:1689592
Hainsworth AH and Hladky SB Effects of double-layer polarization on ion transport. 1987 Biophys. J. pmid:2432953
Cherezov V et al. Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase. 2002 Biophys. J. pmid:12496106
Young RC and Feldberg SW Photoinitiated mediated transport of H3O+ and/or OH- across glycerol monooleate bilayers doped with magnesium octaethylporphyrin. 1979 Biophys. J. pmid:262434
Duchek JR and Huebner JS Voltage transients from photo-isomerizing azo dye in bilayer membranes. 1979 Biophys. J. pmid:262438
Chung H and Caffrey M Direct correlation of structure changes and thermal events in hydrated lipid established by simultaneous calorimetry and time-resolved x-ray diffraction. 1992 Biophys. J. pmid:1420889
Andersen OS Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. 1983 Biophys. J. pmid:6188500
Ring A and Sandblom J Evaluation of surface tension and ion occupancy effects on gramicidin A channel lifetime. 1988 Biophys. J. pmid:2454676
Andersen OS Ion movement through gramicidin A channels. Studies on the diffusion-controlled association step. 1983 Biophys. J. pmid:6188502
Cukierman S et al. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers. 1997 Biophys. J. pmid:9370442
Bihler H and Stark G The inner membrane barrier of lipid membranes experienced by the valinomycin/Rb+ complex: charge pulse experiments at high membrane voltages. 1997 Biophys. J. pmid:9251791
Tsapis N et al. Self diffusion and spectral modifications of a membrane protein, the Rubrivivax gelatinosus LH2 complex, incorporated into a monoolein cubic phase. 2001 Biophys. J. pmid:11509374
Li SJ et al. Effect of electrostatic interactions on phase stability of cubic phases of membranes of monoolein/dioleoylphosphatidic acid mixtures. 2001 Biophys. J. pmid:11463640
Fisher LR and Parker NS Osmotic control of bilayer fusion. 1984 Biophys. J. pmid:6541065
Khvostichenko DS et al. Effects of detergent β-octylglucoside and phosphate salt solutions on phase behavior of monoolein mesophases. 2013 Biophys. J. pmid:24138861
Crilly JF and Earnshaw JC Photon correlation spectroscopy of bilayer lipid membranes. 1983 Biophys. J. pmid:6838962
Ai X and Caffrey M Membrane protein crystallization in lipidic mesophases: detergent effects. 2000 Biophys. J. pmid:10866965
Crawford GE and Earnshaw JC Phase transitions in monoglyceride bilayers. A light scattering study. 1986 Biophys. J. pmid:3719070