2-arachidonoylglycerol

2-arachidonoylglycerol is a lipid of Glycerolipids (GL) class. 2-arachidonoylglycerol is associated with abnormalities such as Atherosclerosis, Heart Diseases, Inflammatory disorder, Colitis and Peripheral Neuropathy. The involved functions are known as Immunoreactivity, inhibitors, Stimulus, Esthesia and Signal Transduction. 2-arachidonoylglycerol often locates in Back, Presynaptic Terminals, Brain region, Blood and Body tissue. The associated genes with 2-arachidonoylglycerol are ADRBK1 gene, Homologous Gene, MGLL gene, PLA2G4A gene and peptide V. The related lipids are oleoylethanolamide, Lipopolysaccharides, Promega, stearic acid and 1-stearoyl-2-arachidonoylglycerol. The related experimental models are Knock-out.

Cross Reference

Introduction

To understand associated biological information of 2-arachidonoylglycerol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2-arachidonoylglycerol?

2-arachidonoylglycerol is suspected in Atherosclerosis, Heart Diseases, Sweet's Syndrome, Colitis, Dehydration, Diabetes and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2-arachidonoylglycerol

MeSH term MeSH ID Detail
Alzheimer Disease D000544 76 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Body Weight D001835 333 associated lipids
Brain Concussion D001924 5 associated lipids
Brain Edema D001929 20 associated lipids
Cardiovascular Diseases D002318 24 associated lipids
Catalepsy D002375 30 associated lipids
Brain Ischemia D002545 89 associated lipids
Colitis D003092 69 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Per page 10 20 50 100 | Total 51

PubChem Associated disorders and diseases

What pathways are associated with 2-arachidonoylglycerol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2-arachidonoylglycerol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2-arachidonoylglycerol?

Knock-out

Knock-out are used in the study 'Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice.' (Walentiny DM et al., 2015), Knock-out are used in the study 'Biochemical and pharmacological characterization of human α/β-hydrolase domain containing 6 (ABHD6) and 12 (ABHD12).' (Navia-Paldanius D et al., 2012) and Knock-out are used in the study 'Metabolic Interplay between Astrocytes and Neurons Regulates Endocannabinoid Action.' (Viader A et al., 2015).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 2-arachidonoylglycerol

Download all related citations
Per page 10 20 50 100 | Total 1060
Authors Title Published Journal PubMed Link
Hutchins-Wiese HL et al. Hind limb suspension and long-chain omega-3 PUFA increase mRNA endocannabinoid system levels in skeletal muscle. 2012 J. Nutr. Biochem. pmid:22051448
Heyman E et al. Intense exercise increases circulating endocannabinoid and BDNF levels in humans--possible implications for reward and depression. 2012 Psychoneuroendocrinology pmid:22029953
Chang JW et al. Highly selective inhibitors of monoacylglycerol lipase bearing a reactive group that is bioisosteric with endocannabinoid substrates. 2012 Chem. Biol. pmid:22542104
Atwood BK et al. CBâ‚‚ cannabinoid receptors inhibit synaptic transmission when expressed in cultured autaptic neurons. 2012 Neuropharmacology pmid:22579668
Spivak CE et al. Blockade of β-cell K(ATP) channels by the endocannabinoid, 2-arachidonoylglycerol. 2012 Biochem. Biophys. Res. Commun. pmid:22609205
Straiker A et al. Differential signalling in human cannabinoid CB1 receptors and their splice variants in autaptic hippocampal neurones. 2012 Br. J. Pharmacol. pmid:22014238
Chon SH et al. Over-expression of monoacylglycerol lipase (MGL) in small intestine alters endocannabinoid levels and whole body energy balance, resulting in obesity. 2012 PLoS ONE pmid:22937137
Thomas KC et al. Contributions of TRPV1, endovanilloids, and endoplasmic reticulum stress in lung cell death in vitro and lung injury. 2012 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:21949157
Woodhams SG et al. Spinal administration of the monoacylglycerol lipase inhibitor JZL184 produces robust inhibitory effects on nociceptive processing and the development of central sensitization in the rat. 2012 Br. J. Pharmacol. pmid:22924700
Schulte K et al. Cannabinoid CB1 receptor activation, pharmacological blockade, or genetic ablation affects the function of the muscarinic auto- and heteroreceptor. 2012 Naunyn Schmiedebergs Arch. Pharmacol. pmid:22215206
Gatta-Cherifi B et al. Simultaneous postprandial deregulation of the orexigenic endocannabinoid anandamide and the anorexigenic peptide YY in obesity. 2012 Int J Obes (Lond) pmid:21844878
Kortleven C et al. Neurotensin inhibits glutamate-mediated synaptic inputs onto ventral tegmental area dopamine neurons through the release of the endocannabinoid 2-AG. 2012 Neuropharmacology pmid:22884466
Tanimura A et al. Synapse type-independent degradation of the endocannabinoid 2-arachidonoylglycerol after retrograde synaptic suppression. 2012 Proc. Natl. Acad. Sci. U.S.A. pmid:22783023
Monteleone P et al. Hedonic eating is associated with increased peripheral levels of ghrelin and the endocannabinoid 2-arachidonoyl-glycerol in healthy humans: a pilot study. 2012 J. Clin. Endocrinol. Metab. pmid:22442280
Tanveer R et al. The endocannabinoid, anandamide, augments Notch-1 signaling in cultured cortical neurons exposed to amyloid-β and in the cortex of aged rats. 2012 J. Biol. Chem. pmid:22891244
Chicca A et al. Evidence for bidirectional endocannabinoid transport across cell membranes. 2012 J. Biol. Chem. pmid:22879589
Whyte LS et al. Cannabinoids and bone: endocannabinoids modulate human osteoclast function in vitro. 2012 Br. J. Pharmacol. pmid:21649637
Skaper SD and Di Marzo V Endocannabinoids in nervous system health and disease: the big picture in a nutshell. 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108539
Booker L et al. The fatty acid amide hydrolase (FAAH) inhibitor PF-3845 acts in the nervous system to reverse LPS-induced tactile allodynia in mice. 2012 Br. J. Pharmacol. pmid:21506952
Di Marzo V and De Petrocellis L Why do cannabinoid receptors have more than one endogenous ligand? 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108541
Puighermanal E et al. Cellular and intracellular mechanisms involved in the cognitive impairment of cannabinoids. 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108544
Starowicz K and Przewlocka B Modulation of neuropathic-pain-related behaviour by the spinal endocannabinoid/endovanilloid system. 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108547
Rani Sagar D et al. Dynamic changes to the endocannabinoid system in models of chronic pain. 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108548
Sticht MA et al. Inhibition of monoacylglycerol lipase attenuates vomiting in Suncus murinus and 2-arachidonoyl glycerol attenuates nausea in rats. 2012 Br. J. Pharmacol. pmid:21470205
Navia-Paldanius D et al. Biochemical and pharmacological characterization of human α/β-hydrolase domain containing 6 (ABHD6) and 12 (ABHD12). 2012 J. Lipid Res. pmid:22969151
Zoerner AA et al. Simultaneous UPLC-MS/MS quantification of the endocannabinoids 2-arachidonoyl glycerol (2AG), 1-arachidonoyl glycerol (1AG), and anandamide in human plasma: minimization of matrix-effects, 2AG/1AG isomerization and degradation by toluene solvent extraction. 2012 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:21752730
Ueda N et al. Biosynthesis and degradation of the endocannabinoid 2-arachidonoylglycerol. 2011 Jan-Feb Biofactors pmid:21328621
Muppidi JR et al. Cannabinoid receptor 2 positions and retains marginal zone B cells within the splenic marginal zone. 2011 J. Exp. Med. pmid:21875957
Zhang L et al. Endocannabinoids generated by Ca2+ or by metabotropic glutamate receptors appear to arise from different pools of diacylglycerol lipase. 2011 PLoS ONE pmid:21305054
Duggan KC et al. (R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2. 2011 Nat. Chem. Biol. pmid:22053353
Puente N et al. Polymodal activation of the endocannabinoid system in the extended amygdala. 2011 Nat. Neurosci. pmid:22057189
Stella N Cell biology. Anatomy of prostaglandin signals. 2011 Science pmid:22076368
Patsenker E et al. Cannabinoid receptor type I modulates alcohol-induced liver fibrosis. 2011 Mol. Med. pmid:21863215
Hill MN et al. Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response. 2011 J. Neurosci. pmid:21775596
Sumislawski JJ et al. Reversible gating of endocannabinoid plasticity in the amygdala by chronic stress: a potential role for monoacylglycerol lipase inhibition in the prevention of stress-induced behavioral adaptation. 2011 Neuropsychopharmacology pmid:21849983
Zhong P et al. Genetic deletion of monoacylglycerol lipase alters endocannabinoid-mediated retrograde synaptic depression in the cerebellum. 2011 J. Physiol. (Lond.) pmid:21911610
Signorello MG et al. Activation by 2-arachidonoylglycerol of platelet p38MAPK/cPLA2 pathway. 2011 J. Cell. Biochem. pmid:21608016
Bari M et al. Characterization of the endocannabinoid system in mouse embryonic stem cells. 2011 Stem Cells Dev. pmid:20446814
Higuchi S et al. Increment of hypothalamic 2-arachidonoylglycerol induces the preference for a high-fat diet via activation of cannabinoid 1 receptors. 2011 Behav. Brain Res. pmid:20817042
Ludányi A et al. Complementary synaptic distribution of enzymes responsible for synthesis and inactivation of the endocannabinoid 2-arachidonoylglycerol in the human hippocampus. 2011 Neuroscience pmid:21035522
Chen X et al. Endocannabinoid 2-arachidonoylglycerol protects neurons against β-amyloid insults. 2011 Neuroscience pmid:21256197
Yoshida T et al. Unique inhibitory synapse with particularly rich endocannabinoid signaling machinery on pyramidal neurons in basal amygdaloid nucleus. 2011 Proc. Natl. Acad. Sci. U.S.A. pmid:21282604
Liao HT et al. Capsaicin in the periaqueductal gray induces analgesia via metabotropic glutamate receptor-mediated endocannabinoid retrograde disinhibition. 2011 Br. J. Pharmacol. pmid:21232043
Soderstrom K et al. Cannabinoid exposure during zebra finch sensorimotor vocal learning persistently alters expression of endocannabinoid signaling elements and acute agonist responsiveness. 2011 BMC Neurosci pmid:21211022
Petrosino S et al. Alteration of the endocannabinoid system in mouse brain during prion disease. 2011 Neuroscience pmid:21195746
Sciolino NR et al. Enhancement of endocannabinoid signaling with JZL184, an inhibitor of the 2-arachidonoylglycerol hydrolyzing enzyme monoacylglycerol lipase, produces anxiolytic effects under conditions of high environmental aversiveness in rats. 2011 Pharmacol. Res. pmid:21600985
Uchigashima M et al. Molecular and morphological configuration for 2-arachidonoylglycerol-mediated retrograde signaling at mossy cell-granule cell synapses in the dentate gyrus. 2011 J. Neurosci. pmid:21613483
Alhouayek M et al. Increasing endogenous 2-arachidonoylglycerol levels counteracts colitis and related systemic inflammation. 2011 FASEB J. pmid:21551239
Justinová Z et al. The endogenous cannabinoid 2-arachidonoylglycerol is intravenously self-administered by squirrel monkeys. 2011 J. Neurosci. pmid:21562266
Borges BC et al. Leptin resistance and desensitization of hypophagia during prolonged inflammatory challenge. 2011 Am. J. Physiol. Endocrinol. Metab. pmid:21343543