2-arachidonoylglycerol

2-arachidonoylglycerol is a lipid of Glycerolipids (GL) class. 2-arachidonoylglycerol is associated with abnormalities such as Atherosclerosis, Heart Diseases, Inflammatory disorder, Colitis and Peripheral Neuropathy. The involved functions are known as Immunoreactivity, inhibitors, Stimulus, Esthesia and Signal Transduction. 2-arachidonoylglycerol often locates in Back, Presynaptic Terminals, Brain region, Blood and Body tissue. The associated genes with 2-arachidonoylglycerol are ADRBK1 gene, Homologous Gene, MGLL gene, PLA2G4A gene and peptide V. The related lipids are oleoylethanolamide, Lipopolysaccharides, Promega, stearic acid and 1-stearoyl-2-arachidonoylglycerol. The related experimental models are Knock-out.

Cross Reference

Introduction

To understand associated biological information of 2-arachidonoylglycerol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2-arachidonoylglycerol?

2-arachidonoylglycerol is suspected in Atherosclerosis, Heart Diseases, Sweet's Syndrome, Colitis, Dehydration, Diabetes and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2-arachidonoylglycerol

MeSH term MeSH ID Detail
Alzheimer Disease D000544 76 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Body Weight D001835 333 associated lipids
Brain Concussion D001924 5 associated lipids
Brain Edema D001929 20 associated lipids
Cardiovascular Diseases D002318 24 associated lipids
Catalepsy D002375 30 associated lipids
Brain Ischemia D002545 89 associated lipids
Colitis D003092 69 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Encephalitis D004660 15 associated lipids
Epilepsy D004827 35 associated lipids
Fatty Liver, Alcoholic D005235 11 associated lipids
Fragile X Syndrome D005600 5 associated lipids
Glioma D005910 112 associated lipids
Hepatic Encephalopathy D006501 9 associated lipids
Hyperalgesia D006930 42 associated lipids
Hyperinsulinism D006946 27 associated lipids
Hyperkinesis D006948 11 associated lipids
Hypotension D007022 41 associated lipids
Hypothermia D007035 19 associated lipids
Inflammation D007249 119 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Liver Cirrhosis, Alcoholic D008104 17 associated lipids
Memory Disorders D008569 33 associated lipids
Morphine Dependence D009021 9 associated lipids
Nerve Degeneration D009410 53 associated lipids
Nervous System Diseases D009422 37 associated lipids
Neuralgia D009437 28 associated lipids
Neuromyelitis Optica D009471 2 associated lipids
Obesity D009765 29 associated lipids
Pain D010146 64 associated lipids
Peripheral Nervous System Diseases D010523 33 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Starvation D013217 47 associated lipids
Stomach Ulcer D013276 75 associated lipids
Reperfusion Injury D015427 65 associated lipids
Myocardial Reperfusion Injury D015428 20 associated lipids
Weight Gain D015430 101 associated lipids
Head Injuries, Closed D016489 5 associated lipids
Endometrial Neoplasms D016889 30 associated lipids
Dermatitis, Allergic Contact D017449 20 associated lipids
Cholangiocarcinoma D018281 7 associated lipids
Neurodegenerative Diseases D019636 32 associated lipids
Parkinsonian Disorders D020734 20 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Ganglion Cysts D045888 1 associated lipids
Fetal Nutrition Disorders D048070 1 associated lipids
Acute Lung Injury D055371 33 associated lipids
Acute Pain D059787 3 associated lipids
Per page 10 20 50 100 | Total 51

PubChem Associated disorders and diseases

What pathways are associated with 2-arachidonoylglycerol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2-arachidonoylglycerol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2-arachidonoylglycerol?

Knock-out

Knock-out are used in the study 'Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice.' (Walentiny DM et al., 2015), Knock-out are used in the study 'Biochemical and pharmacological characterization of human α/β-hydrolase domain containing 6 (ABHD6) and 12 (ABHD12).' (Navia-Paldanius D et al., 2012) and Knock-out are used in the study 'Metabolic Interplay between Astrocytes and Neurons Regulates Endocannabinoid Action.' (Viader A et al., 2015).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 2-arachidonoylglycerol

Download all related citations
Per page 10 20 50 100 | Total 1060
Authors Title Published Journal PubMed Link
Nomura DK et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. 2011 Science pmid:22021672
Muppidi JR et al. Cannabinoid receptor 2 positions and retains marginal zone B cells within the splenic marginal zone. 2011 J. Exp. Med. pmid:21875957
Zhang L et al. Endocannabinoids generated by Ca2+ or by metabotropic glutamate receptors appear to arise from different pools of diacylglycerol lipase. 2011 PLoS ONE pmid:21305054
Schalk-Hihi C et al. Crystal structure of a soluble form of human monoglyceride lipase in complex with an inhibitor at 1.35 Ã… resolution. 2011 Protein Sci. pmid:21308848
Duggan KC et al. (R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2. 2011 Nat. Chem. Biol. pmid:22053353
Puente N et al. Polymodal activation of the endocannabinoid system in the extended amygdala. 2011 Nat. Neurosci. pmid:22057189
Raman P et al. 15-Deoxy-delta12,14-prostaglandin J2-glycerol ester, a putative metabolite of 2-arachidonyl glycerol, activates peroxisome proliferator activated receptor gamma. 2011 Mol. Pharmacol. pmid:21511917
Bari M et al. Characterization of the endocannabinoid system in mouse embryonic stem cells. 2011 Stem Cells Dev. pmid:20446814
Higuchi S et al. Increment of hypothalamic 2-arachidonoylglycerol induces the preference for a high-fat diet via activation of cannabinoid 1 receptors. 2011 Behav. Brain Res. pmid:20817042
Ludányi A et al. Complementary synaptic distribution of enzymes responsible for synthesis and inactivation of the endocannabinoid 2-arachidonoylglycerol in the human hippocampus. 2011 Neuroscience pmid:21035522
Martín-Couce L et al. Development of endocannabinoid-based chemical probes for the study of cannabinoid receptors. 2011 J. Med. Chem. pmid:21675776
Chanda D et al. Cannabinoid receptor type 1 (CB1R) signaling regulates hepatic gluconeogenesis via induction of endoplasmic reticulum-bound transcription factor cAMP-responsive element-binding protein H (CREBH) in primary hepatocytes. 2011 J. Biol. Chem. pmid:21693703
Busquets-Garcia A et al. Differential role of anandamide and 2-arachidonoylglycerol in memory and anxiety-like responses. 2011 Biol. Psychiatry pmid:21684528
Signorello MG et al. Activation of human platelets by 2-arachidonoylglycerol: role of PKC in NO/cGMP pathway modulation. 2011 Curr Neurovasc Res pmid:21675954
Sarmad S et al. Depolarizing and calcium-mobilizing stimuli fail to enhance synthesis and release of endocannabinoids from rat brain cerebral cortex slices. 2011 J. Neurochem. pmid:21375532
Marrs WR et al. Dual inhibition of alpha/beta-hydrolase domain 6 and fatty acid amide hydrolase increases endocannabinoid levels in neurons. 2011 J. Biol. Chem. pmid:21665953
Gantayet A et al. Endocannabinoids and diacylglycerol kinase activity. 2011 Biochim. Biophys. Acta pmid:21194521
Duclos RI et al. A methodology for radiolabeling of the endocannabinoid 2-arachidonoylglycerol (2-AG). 2011 J. Org. Chem. pmid:21370840
Shimizu T et al. Endogenously generated 2-arachidonoylglycerol plays an inhibitory role in bombesin-induced activation of central adrenomedullary outflow in rats. 2011 Eur. J. Pharmacol. pmid:21371452
Carr RL et al. Effect of developmental chlorpyrifos exposure, on endocannabinoid metabolizing enzymes, in the brain of juvenile rats. 2011 Toxicol. Sci. pmid:21507991
Chiba T et al. A synthetic cannabinoid, CP55940, inhibits lipopolysaccharide-induced cytokine mRNA expression in a cannabinoid receptor-independent mechanism in rat cerebellar granule cells. 2011 J. Pharm. Pharmacol. pmid:21492165
De Petrocellis L et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. 2011 Br. J. Pharmacol. pmid:21175579
Jumpertz R et al. Central and peripheral endocannabinoids and cognate acylethanolamides in humans: association with race, adiposity, and energy expenditure. 2011 J. Clin. Endocrinol. Metab. pmid:21177788
Sciolino NR et al. Enhancement of endocannabinoid signaling with JZL184, an inhibitor of the 2-arachidonoylglycerol hydrolyzing enzyme monoacylglycerol lipase, produces anxiolytic effects under conditions of high environmental aversiveness in rats. 2011 Pharmacol. Res. pmid:21600985
Uchigashima M et al. Molecular and morphological configuration for 2-arachidonoylglycerol-mediated retrograde signaling at mossy cell-granule cell synapses in the dentate gyrus. 2011 J. Neurosci. pmid:21613483
Di Marzo V Endocannabinoid signaling in the brain: biosynthetic mechanisms in the limelight. 2011 Nat. Neurosci. pmid:21187849
Alhouayek M et al. Increasing endogenous 2-arachidonoylglycerol levels counteracts colitis and related systemic inflammation. 2011 FASEB J. pmid:21551239
Justinová Z et al. The endogenous cannabinoid 2-arachidonoylglycerol is intravenously self-administered by squirrel monkeys. 2011 J. Neurosci. pmid:21562266
Guindon J et al. Peripheral antinociceptive effects of inhibitors of monoacylglycerol lipase in a rat model of inflammatory pain. 2011 Br. J. Pharmacol. pmid:21198549
Borges BC et al. Leptin resistance and desensitization of hypophagia during prolonged inflammatory challenge. 2011 Am. J. Physiol. Endocrinol. Metab. pmid:21343543
Quercioli A et al. Elevated endocannabinoid plasma levels are associated with coronary circulatory dysfunction in obesity. 2011 Eur. Heart J. pmid:21303779
Chouinard F et al. The endocannabinoid 2-arachidonoyl-glycerol activates human neutrophils: critical role of its hydrolysis and de novo leukotriene B4 biosynthesis. 2011 J. Immunol. pmid:21278347
Catanzaro G et al. Effect of capacitation on the endocannabinoid system of mouse sperm. 2011 Mol. Cell. Endocrinol. pmid:21723369
Ueda N et al. Biosynthesis and degradation of the endocannabinoid 2-arachidonoylglycerol. 2011 Jan-Feb Biofactors pmid:21328621
Giordano C et al. TRPV1-dependent and -independent alterations in the limbic cortex of neuropathic mice: impact on glial caspases and pain perception. 2012 Cereb. Cortex pmid:22139792
Higuchi S et al. Hypothalamic 2-arachidonoylglycerol regulates multistage process of high-fat diet preferences. 2012 PLoS ONE pmid:22737214
Li C et al. Expression and function of monoacylglycerol lipase in mouse β-cells and human islets of Langerhans. 2012 Cell. Physiol. Biochem. pmid:22739267
Matuszak N et al. Dual inhibition of MAGL and type II topoisomerase by N-phenylmaleimides as a potential strategy to reduce neuroblastoma cell growth. 2012 Eur J Pharm Sci pmid:22127371
Carloni S et al. Pretreatment with the monoacylglycerol lipase inhibitor URB602 protects from the long-term consequences of neonatal hypoxic-ischemic brain injury in rats. 2012 Pediatr. Res. pmid:22821058
Nithipatikom K et al. Cannabinoid receptor type 1 (CB1) activation inhibits small GTPase RhoA activity and regulates motility of prostate carcinoma cells. 2012 Endocrinology pmid:22087025
Gregg LC et al. Activation of type 5 metabotropic glutamate receptors and diacylglycerol lipase-α initiates 2-arachidonoylglycerol formation and endocannabinoid-mediated analgesia. 2012 J. Neurosci. pmid:22787031
Deshmukh RR and Sharma PL Stimulation of accumbens shell cannabinoid CB(1) receptors by noladin ether, a putative endocannabinoid, modulates food intake and dietary selection in rats. 2012 Pharmacol. Res. pmid:22728691
Czifra G et al. Endocannabinoids regulate growth and survival of human eccrine sweat gland-derived epithelial cells. 2012 J. Invest. Dermatol. pmid:22513781
Dubreucq S et al. Genetic dissection of the role of cannabinoid type-1 receptors in the emotional consequences of repeated social stress in mice. 2012 Neuropsychopharmacology pmid:22434220
Pucci M et al. Endocannabinoids stimulate human melanogenesis via type-1 cannabinoid receptor. 2012 J. Biol. Chem. pmid:22431736
McLaughlin RJ et al. Prefrontal cortical anandamide signaling coordinates coping responses to stress through a serotonergic pathway. 2012 Eur Neuropsychopharmacol pmid:22325231
Jones BR et al. Surrogate matrix and surrogate analyte approaches for definitive quantitation of endogenous biomolecules. 2012 Bioanalysis pmid:23088461
Hauer D et al. Glucocorticoid-endocannabinoid interaction in cardiac surgical patients: relationship to early cognitive dysfunction and late depression. 2012 Rev Neurosci pmid:23006898
Song J et al. Gating the polarity of endocannabinoid-mediated synaptic plasticity by nitric oxide in the spinal locomotor network. 2012 J. Neurosci. pmid:22496555
Psychoyos D et al. Cannabinoid receptor 1 signaling in embryo neurodevelopment. 2012 Birth Defects Res. B Dev. Reprod. Toxicol. pmid:22311661