2-arachidonoylglycerol

2-arachidonoylglycerol is a lipid of Glycerolipids (GL) class. 2-arachidonoylglycerol is associated with abnormalities such as Atherosclerosis, Heart Diseases, Inflammatory disorder, Colitis and Peripheral Neuropathy. The involved functions are known as Immunoreactivity, inhibitors, Stimulus, Esthesia and Signal Transduction. 2-arachidonoylglycerol often locates in Back, Presynaptic Terminals, Brain region, Blood and Body tissue. The associated genes with 2-arachidonoylglycerol are ADRBK1 gene, Homologous Gene, MGLL gene, PLA2G4A gene and peptide V. The related lipids are oleoylethanolamide, Lipopolysaccharides, Promega, stearic acid and 1-stearoyl-2-arachidonoylglycerol. The related experimental models are Knock-out.

Cross Reference

Introduction

To understand associated biological information of 2-arachidonoylglycerol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2-arachidonoylglycerol?

2-arachidonoylglycerol is suspected in Atherosclerosis, Heart Diseases, Sweet's Syndrome, Colitis, Dehydration, Diabetes and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2-arachidonoylglycerol

MeSH term MeSH ID Detail
Ganglion Cysts D045888 1 associated lipids
Fetal Nutrition Disorders D048070 1 associated lipids
Neuromyelitis Optica D009471 2 associated lipids
Acute Pain D059787 3 associated lipids
Brain Concussion D001924 5 associated lipids
Fragile X Syndrome D005600 5 associated lipids
Head Injuries, Closed D016489 5 associated lipids
Cholangiocarcinoma D018281 7 associated lipids
Morphine Dependence D009021 9 associated lipids
Hepatic Encephalopathy D006501 9 associated lipids
Hyperkinesis D006948 11 associated lipids
Fatty Liver, Alcoholic D005235 11 associated lipids
Encephalitis D004660 15 associated lipids
Liver Cirrhosis, Alcoholic D008104 17 associated lipids
Hypothermia D007035 19 associated lipids
Myocardial Reperfusion Injury D015428 20 associated lipids
Dermatitis, Allergic Contact D017449 20 associated lipids
Brain Edema D001929 20 associated lipids
Parkinsonian Disorders D020734 20 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Cardiovascular Diseases D002318 24 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Hyperinsulinism D006946 27 associated lipids
Neuralgia D009437 28 associated lipids
Obesity D009765 29 associated lipids
Catalepsy D002375 30 associated lipids
Endometrial Neoplasms D016889 30 associated lipids
Neurodegenerative Diseases D019636 32 associated lipids
Memory Disorders D008569 33 associated lipids
Acute Lung Injury D055371 33 associated lipids
Peripheral Nervous System Diseases D010523 33 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Epilepsy D004827 35 associated lipids
Nervous System Diseases D009422 37 associated lipids
Hypotension D007022 41 associated lipids
Hyperalgesia D006930 42 associated lipids
Starvation D013217 47 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Nerve Degeneration D009410 53 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Pain D010146 64 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Stomach Ulcer D013276 75 associated lipids
Alzheimer Disease D000544 76 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Brain Ischemia D002545 89 associated lipids
Weight Gain D015430 101 associated lipids
Glioma D005910 112 associated lipids
Inflammation D007249 119 associated lipids
Per page 10 20 50 100 | Total 51

PubChem Associated disorders and diseases

What pathways are associated with 2-arachidonoylglycerol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2-arachidonoylglycerol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2-arachidonoylglycerol?

Knock-out

Knock-out are used in the study 'Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice.' (Walentiny DM et al., 2015), Knock-out are used in the study 'Biochemical and pharmacological characterization of human α/β-hydrolase domain containing 6 (ABHD6) and 12 (ABHD12).' (Navia-Paldanius D et al., 2012) and Knock-out are used in the study 'Metabolic Interplay between Astrocytes and Neurons Regulates Endocannabinoid Action.' (Viader A et al., 2015).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 2-arachidonoylglycerol

Download all related citations
Per page 10 20 50 100 | Total 1060
Authors Title Published Journal PubMed Link
Vázquez C et al. Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: In vivo studies. 2015 Neurobiol. Dis. pmid:25917763
Hutch CR et al. An endocannabinoid system is present in the mouse olfactory epithelium but does not modulate olfaction. 2015 Neuroscience pmid:26037800
Thieme U et al. Quantification of anandamide and 2-arachidonoylglycerol plasma levels to examine potential influences of tetrahydrocannabinol application on the endocannabinoid system in humans. 2014 Jan-Feb Drug Test Anal pmid:24424856
den Boon FS et al. Endocannabinoids produced upon action potential firing evoke a Cl(-) current via type-2 cannabinoid receptors in the medial prefrontal cortex. 2014 Pflugers Arch. pmid:24671573
Flores-Otero J et al. Ligand-specific endocytic dwell times control functional selectivity of the cannabinoid receptor 1. 2014 Nat Commun pmid:25081814
Smaga I et al. Antidepressants and changes in concentration of endocannabinoids and N-acylethanolamines in rat brain structures. 2014 Neurotox Res pmid:24652522
Nithipatikom K et al. A novel activity of microsomal epoxide hydrolase: metabolism of the endocannabinoid 2-arachidonoylglycerol. 2014 J. Lipid Res. pmid:24958911
Karabowicz P et al. [Role of endocannabinoid 2-arachidonoylglycerol in the physiology and pathophysiology of the cardiovascular system]. 2014 Postepy Hig Med Dosw (Online) pmid:24934539
Hillard CJ Stress regulates endocannabinoid-CB1 receptor signaling. 2014 Semin. Immunol. pmid:24882055
Kohnz RA and Nomura DK Chemical approaches to therapeutically target the metabolism and signaling of the endocannabinoid 2-AG and eicosanoids. 2014 Chem Soc Rev pmid:24676249
Pérez-Morales M et al. 2-Arachidonoylglycerol into the lateral hypothalamus improves reduced sleep in adult rats subjected to maternal separation. 2014 Neuroreport pmid:25356522
Pascual AC et al. Cannabinoid receptor-dependent metabolism of 2-arachidonoylglycerol during aging. 2014 Exp. Gerontol. pmid:24768821
Gasperi V et al. 2-Arachidonoylglycerol modulates human endothelial cell/leukocyte interactions by controlling selectin expression through CB1 and CB2 receptors. 2014 Int. J. Biochem. Cell Biol. pmid:24721209
Lu Y et al. Endocannabinoid 2-arachidonylglycerol protects primary cultured neurons against LPS-induced impairments in rat caudate nucleus. 2014 J. Mol. Neurosci. pmid:24510751
Morena M et al. Endogenous cannabinoid release within prefrontal-limbic pathways affects memory consolidation of emotional training. 2014 Proc. Natl. Acad. Sci. U.S.A. pmid:25489086
McDougle DR et al. Endocannabinoids anandamide and 2-arachidonoylglycerol are substrates for human CYP2J2 epoxygenase. 2014 J. Pharmacol. Exp. Ther. pmid:25277139
Özdemir B et al. Endocannabinoids and inflammatory response in periodontal ligament cells. 2014 PLoS ONE pmid:25226300
Lau BK et al. Endocannabinoid modulation by FAAH and monoacylglycerol lipase within the analgesic circuitry of the periaqueductal grey. 2014 Br. J. Pharmacol. pmid:25041240
Laprairie RB et al. Type 1 cannabinoid receptor ligands display functional selectivity in a cell culture model of striatal medium spiny projection neurons. 2014 J. Biol. Chem. pmid:25037227
Cipriano M et al. The influence of monoacylglycerol lipase inhibition upon the expression of epidermal growth factor receptor in human PC-3 prostate cancer cells. 2014 BMC Res Notes pmid:25012825
Wiley JL et al. Endocannabinoid contribution to Δ9-tetrahydrocannabinol discrimination in rodents. 2014 Eur. J. Pharmacol. pmid:24858366
Nader J et al. Prior stimulation of the endocannabinoid system prevents methamphetamine-induced dopaminergic neurotoxicity in the striatum through activation of CB2 receptors. 2014 Neuropharmacology pmid:24709540
Sun LJ et al. Endocannabinoid system activation contributes to glucose metabolism disorders of hepatocytes and promotes hepatitis C virus replication. 2014 Int. J. Infect. Dis. pmid:24704332
Basavarajappa BS et al. Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice. 2014 Hippocampus pmid:24648181
Larose MC et al. Mechanisms of human eosinophil migration induced by the combination of IL-5 and the endocannabinoid 2-arachidonoyl-glycerol. 2014 J. Allergy Clin. Immunol. pmid:24530098
Abdulnour J et al. Circulating endocannabinoids in insulin sensitive vs. insulin resistant obese postmenopausal women. A MONET group study. 2014 Obesity (Silver Spring) pmid:23616305
Aaltonen N et al. Brain regional cannabinoid CB(1) receptor signalling and alternative enzymatic pathways for 2-arachidonoylglycerol generation in brain sections of diacylglycerol lipase deficient mice. 2014 Eur J Pharm Sci pmid:24012970
Brantl SA et al. Activation of platelets by the endocannabinoids 2-arachidonoylglycerol and virodhamine is mediated by their conversion to arachidonic acid and thromboxane A2, not by activation of cannabinoid receptors. 2014 Platelets pmid:24102401
Iannotti FA et al. The endocannabinoid 2-AG controls skeletal muscle cell differentiation via CB1 receptor-dependent inhibition of Kv7 channels. 2014 Proc. Natl. Acad. Sci. U.S.A. pmid:24927567
Laitinen T et al. Mutation of Cys242 of human monoacylglycerol lipase disrupts balanced hydrolysis of 1- and 2-monoacylglycerols and selectively impairs inhibitor potency. 2014 Mol. Pharmacol. pmid:24368842
Koltyn KF et al. Mechanisms of exercise-induced hypoalgesia. 2014 J Pain pmid:25261342
Melis M et al. Enhanced endocannabinoid-mediated modulation of rostromedial tegmental nucleus drive onto dopamine neurons in Sardinian alcohol-preferring rats. 2014 J. Neurosci. pmid:25232109
Murataeva N et al. Parsing the players: 2-arachidonoylglycerol synthesis and degradation in the CNS. 2014 Br. J. Pharmacol. pmid:24102242
Yasuo S et al. 2-Arachidonoyl glycerol sensitizes the pars distalis and enhances forskolin-stimulated prolactin secretion in Syrian hamsters. 2014 Chronobiol. Int. pmid:24200164
Alvheim AR et al. Dietary linoleic acid elevates the endocannabinoids 2-AG and anandamide and promotes weight gain in mice fed a low fat diet. 2014 Lipids pmid:24081493
Pertwee RG Elevating endocannabinoid levels: pharmacological strategies and potential therapeutic applications. 2014 Proc Nutr Soc pmid:24135210
Burston JJ and Woodhams SG Endocannabinoid system and pain: an introduction. 2014 Proc Nutr Soc pmid:24148358
Desroches J et al. Endocannabinoids decrease neuropathic pain-related behavior in mice through the activation of one or both peripheral CB₁ and CB₂ receptors. 2014 Neuropharmacology pmid:24148808
Yang K et al. Differential regulation of NMDAR and NMDAR-mediated metaplasticity by anandamide and 2-AG in the hippocampus. 2014 Hippocampus pmid:25087967
Pulgar VM et al. Increased angiotensin II contraction of the uterine artery at early gestation in a transgenic model of hypertensive pregnancy is reduced by inhibition of endocannabinoid hydrolysis. 2014 Hypertension pmid:24935942
Ohno-Shosaku T and Kano M Endocannabinoid-mediated retrograde modulation of synaptic transmission. 2014 Curr. Opin. Neurobiol. pmid:24747340
Fowler CJ Has FLAT fallen flat? 2014 Trends Pharmacol. Sci. pmid:24398120
Chianese R et al. Hypothalamus-pituitary axis: an obligatory target for endocannabinoids to inhibit steroidogenesis in frog testis. 2014 Gen. Comp. Endocrinol. pmid:24566122
Rea K et al. Microinjection of 2-arachidonoyl glycerol into the rat ventral hippocampus differentially modulates contextually induced fear, depending on a persistent pain state. 2014 Eur. J. Neurosci. pmid:24494683
Zheng Y et al. Dexamethasone alleviates motion sickness in rats in part by enhancing the endocannabinoid system. 2014 Eur. J. Pharmacol. pmid:24508383
Krishnan G and Chatterjee N Endocannabinoids affect innate immunity of Muller glia during HIV-1 Tat cytotoxicity. 2014 Mol. Cell. Neurosci. pmid:24418364
Nicolussi S et al. Guineensine is a novel inhibitor of endocannabinoid uptake showing cannabimimetic behavioral effects in BALB/c mice. 2014 Pharmacol. Res. pmid:24412246
Bystrowska B et al. Changes in endocannabinoid and N-acylethanolamine levels in rat brain structures following cocaine self-administration and extinction training. 2014 Prog. Neuropsychopharmacol. Biol. Psychiatry pmid:24334211
Schaefer C et al. Fatty acid ethanolamide levels are altered in borderline personality and complex posttraumatic stress disorders. 2014 Eur Arch Psychiatry Clin Neurosci pmid:24253425
Alpár A et al. Endocannabinoids modulate cortical development by configuring Slit2/Robo1 signalling. 2014 Nat Commun pmid:25030704