2-arachidonoylglycerol

2-arachidonoylglycerol is a lipid of Glycerolipids (GL) class. 2-arachidonoylglycerol is associated with abnormalities such as Atherosclerosis, Heart Diseases, Inflammatory disorder, Colitis and Peripheral Neuropathy. The involved functions are known as Immunoreactivity, inhibitors, Stimulus, Esthesia and Signal Transduction. 2-arachidonoylglycerol often locates in Back, Presynaptic Terminals, Brain region, Blood and Body tissue. The associated genes with 2-arachidonoylglycerol are ADRBK1 gene, Homologous Gene, MGLL gene, PLA2G4A gene and peptide V. The related lipids are oleoylethanolamide, Lipopolysaccharides, Promega, stearic acid and 1-stearoyl-2-arachidonoylglycerol. The related experimental models are Knock-out.

Cross Reference

Introduction

To understand associated biological information of 2-arachidonoylglycerol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2-arachidonoylglycerol?

2-arachidonoylglycerol is suspected in Atherosclerosis, Heart Diseases, Sweet's Syndrome, Colitis, Dehydration, Diabetes and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2-arachidonoylglycerol

MeSH term MeSH ID Detail
Body Weight D001835 333 associated lipids
Inflammation D007249 119 associated lipids
Glioma D005910 112 associated lipids
Weight Gain D015430 101 associated lipids
Brain Ischemia D002545 89 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Alzheimer Disease D000544 76 associated lipids
Stomach Ulcer D013276 75 associated lipids
Colitis D003092 69 associated lipids
Reperfusion Injury D015427 65 associated lipids
Pain D010146 64 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Nerve Degeneration D009410 53 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Starvation D013217 47 associated lipids
Hyperalgesia D006930 42 associated lipids
Hypotension D007022 41 associated lipids
Nervous System Diseases D009422 37 associated lipids
Epilepsy D004827 35 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Peripheral Nervous System Diseases D010523 33 associated lipids
Memory Disorders D008569 33 associated lipids
Acute Lung Injury D055371 33 associated lipids
Neurodegenerative Diseases D019636 32 associated lipids
Endometrial Neoplasms D016889 30 associated lipids
Catalepsy D002375 30 associated lipids
Obesity D009765 29 associated lipids
Neuralgia D009437 28 associated lipids
Hyperinsulinism D006946 27 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Cardiovascular Diseases D002318 24 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Myocardial Reperfusion Injury D015428 20 associated lipids
Dermatitis, Allergic Contact D017449 20 associated lipids
Brain Edema D001929 20 associated lipids
Parkinsonian Disorders D020734 20 associated lipids
Hypothermia D007035 19 associated lipids
Liver Cirrhosis, Alcoholic D008104 17 associated lipids
Encephalitis D004660 15 associated lipids
Fatty Liver, Alcoholic D005235 11 associated lipids
Hyperkinesis D006948 11 associated lipids
Hepatic Encephalopathy D006501 9 associated lipids
Morphine Dependence D009021 9 associated lipids
Cholangiocarcinoma D018281 7 associated lipids
Fragile X Syndrome D005600 5 associated lipids
Head Injuries, Closed D016489 5 associated lipids
Brain Concussion D001924 5 associated lipids
Acute Pain D059787 3 associated lipids
Neuromyelitis Optica D009471 2 associated lipids
Fetal Nutrition Disorders D048070 1 associated lipids
Per page 10 20 50 100 | Total 51

PubChem Associated disorders and diseases

What pathways are associated with 2-arachidonoylglycerol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2-arachidonoylglycerol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2-arachidonoylglycerol?

Knock-out

Knock-out are used in the study 'Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice.' (Walentiny DM et al., 2015), Knock-out are used in the study 'Biochemical and pharmacological characterization of human α/β-hydrolase domain containing 6 (ABHD6) and 12 (ABHD12).' (Navia-Paldanius D et al., 2012) and Knock-out are used in the study 'Metabolic Interplay between Astrocytes and Neurons Regulates Endocannabinoid Action.' (Viader A et al., 2015).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 2-arachidonoylglycerol

Download all related citations
Per page 10 20 50 100 | Total 1060
Authors Title Published Journal PubMed Link
Bisogno T Endogenous cannabinoids: structure and metabolism. 2008 J. Neuroendocrinol. pmid:18426492
Witting A et al. Endocannabinoids accumulate in spinal cord of SOD1 G93A transgenic mice. 2004 J. Neurochem. pmid:15189359
Belluomo I et al. Opposite control of frontocortical 2-arachidonoylglycerol turnover rate by cannabinoid type-1 receptors located on glutamatergic neurons and on astrocytes. 2015 J. Neurochem. pmid:25626460
García del Caño G et al. Nuclear diacylglycerol lipase-α in rat brain cortical neurons: evidence of 2-arachidonoylglycerol production in concert with phospholipase C-β activity. 2015 J. Neurochem. pmid:25308538
Oka S et al. Ether-linked analogue of 2-arachidonoylglycerol (noladin ether) was not detected in the brains of various mammalian species. 2003 J. Neurochem. pmid:12787057
Subbanna S et al. Postnatal ethanol exposure alters levels of 2-arachidonylglycerol-metabolizing enzymes and pharmacological inhibition of monoacylglycerol lipase does not cause neurodegeneration in neonatal mice. 2015 J. Neurochem. pmid:25857698
Wu X et al. Alteration of endocannabinoid system in human gliomas. 2012 J. Neurochem. pmid:22176552
Rhee MH et al. Functional role of tryptophan residues in the fourth transmembrane domain of the CB(2) cannabinoid receptor. 2000 J. Neurochem. pmid:11080201
Palomäki VA et al. Visualization of 2-arachidonoylglycerol accumulation and cannabinoid CB1 receptor activity in rat brain cryosections by functional autoradiography. 2007 J. Neurochem. pmid:17254014
Sang N et al. COX-2 oxidative metabolite of endocannabinoid 2-AG enhances excitatory glutamatergic synaptic transmission and induces neurotoxicity. 2007 J. Neurochem. pmid:17539917
Maccarrone M et al. Levodopa treatment reverses endocannabinoid system abnormalities in experimental parkinsonism. 2003 J. Neurochem. pmid:12716433
Degn M et al. Changes in brain levels of N-acylethanolamines and 2-arachidonoylglycerol in focal cerebral ischemia in mice. 2007 J. Neurochem. pmid:17868306
Sarmad S et al. Depolarizing and calcium-mobilizing stimuli fail to enhance synthesis and release of endocannabinoids from rat brain cerebral cortex slices. 2011 J. Neurochem. pmid:21375532
Jarrahian A et al. Structure-activity relationships among N-arachidonylethanolamine (Anandamide) head group analogues for the anandamide transporter. 2000 J. Neurochem. pmid:10820223
Hansen HH et al. Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration. 2001 J. Neurochem. pmid:11579150
Maccarrone M et al. Anandamide degradation and N-acylethanolamines level in wild-type and CB1 cannabinoid receptor knockout mice of different ages. 2001 J. Neurochem. pmid:11461969
Alvarez-Jaimes L et al. Chronic ethanol treatment potentiates ethanol-induced increases in interstitial nucleus accumbens endocannabinoid levels in rats. 2009 J. Neurochem. pmid:19650871
Maccarrone M et al. Lipid rafts regulate 2-arachidonoylglycerol metabolism and physiological activity in the striatum. 2009 J. Neurochem. pmid:19187444
Di Marzo V et al. Levels, metabolism, and pharmacological activity of anandamide in CB(1) cannabinoid receptor knockout mice: evidence for non-CB(1), non-CB(2) receptor-mediated actions of anandamide in mouse brain. 2000 J. Neurochem. pmid:11080195
Bisogno T et al. Phosphatidic acid as the biosynthetic precursor of the endocannabinoid 2-arachidonoylglycerol in intact mouse neuroblastoma cells stimulated with ionomycin. 1999 J. Neurochem. pmid:10217292
Placzek EA et al. Mechanisms for recycling and biosynthesis of endogenous cannabinoids anandamide and 2-arachidonylglycerol. 2008 J. Neurochem. pmid:18778304
Maccarrone M et al. Gas chromatography-mass spectrometry analysis of endogenous cannabinoids in healthy and tumoral human brain and human cells in culture. 2001 J. Neurochem. pmid:11208922
Baur R et al. Molecular analysis of the site for 2-arachidonylglycerol (2-AG) on the β₂ subunit of GABA(A) receptors. 2013 J. Neurochem. pmid:23600744
Parrish JC and Nichols DE Serotonin 5-HT(2A) receptor activation induces 2-arachidonoylglycerol release through a phospholipase c-dependent mechanism. 2006 J. Neurochem. pmid:17010161
Imperatore R et al. Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB₁R signaling and anxiety-like behavior. 2015 J. Neurochem. pmid:26223500
Zou Z et al. Endocannabinoid 2-Arachidonoylglycerol Suppresses LPS-Induced Inhibition of A-Type Potassium Channel Currents in Caudate Nucleus Neurons Through CB1 Receptor. 2016 J. Mol. Neurosci. pmid:27129498
Zou Z et al. Effect of Homocysteine on Voltage-Gated Sodium Channel Currents in Primary Cultured Rat Caudate Nucleus Neurons and Its Modulation by 2-Arachidonylglycerol. 2015 J. Mol. Neurosci. pmid:26179279
Dong M et al. Endocannabinoid 2-arachidonylglycerol protects primary cultured neurons against homocysteine-induced impairments in rat caudate nucleus through CB1 receptor. 2015 J. Mol. Neurosci. pmid:25007951
Lu Y et al. Endocannabinoid 2-arachidonylglycerol protects primary cultured neurons against LPS-induced impairments in rat caudate nucleus. 2014 J. Mol. Neurosci. pmid:24510751
D'Argenio G et al. Overactivity of the intestinal endocannabinoid system in celiac disease and in methotrexate-treated rats. 2007 J. Mol. Med. pmid:17396241
Catani MV et al. Expression of the endocannabinoid system in the bi-potential HEL cell line: commitment to the megakaryoblastic lineage by 2-arachidonoylglycerol. 2009 J. Mol. Med. pmid:18820887
Amorós I et al. Endocannabinoids and cannabinoid analogues block human cardiac Kv4.3 channels in a receptor-independent manner. 2010 J. Mol. Cell. Cardiol. pmid:19616555
Weis F et al. Substantially altered expression pattern of cannabinoid receptor 2 and activated endocannabinoid system in patients with severe heart failure. 2010 J. Mol. Cell. Cardiol. pmid:19931541
Tiburu EK and Shen L Distance measurements and conformational analysis of sn-2-arachidonoylglycerol-membrane sample by ²H-³¹P REDOR NMR. 2014 J. Membr. Biol. pmid:24402242
Lambert DM and Fowler CJ The endocannabinoid system: drug targets, lead compounds, and potential therapeutic applications. 2005 J. Med. Chem. pmid:16078824
Cisneros JA et al. Structure-activity relationship of a series of inhibitors of monoacylglycerol hydrolysis--comparison with effects upon fatty acid amide hydrolase. 2007 J. Med. Chem. pmid:17764163
Barnett-Norris J et al. Exploration of biologically relevant conformations of anandamide, 2-arachidonylglycerol, and their analogues using conformational memories. 1998 J. Med. Chem. pmid:9822555
Martín-Couce L et al. Development of endocannabinoid-based chemical probes for the study of cannabinoid receptors. 2011 J. Med. Chem. pmid:21675776
van der Stelt M et al. Oxygenated metabolites of anandamide and 2-arachidonoylglycerol: conformational analysis and interaction with cannabinoid receptors, membrane transporter, and fatty acid amide hydrolase. 2002 J. Med. Chem. pmid:12166944
Ortar G et al. Tetrahydrolipstatin analogues as modulators of endocannabinoid 2-arachidonoylglycerol metabolism. 2008 J. Med. Chem. pmid:18831576
Brizzi A et al. Resorcinol-sn-glycerol derivatives: novel 2-arachidonoylglycerol mimetics endowed with high affinity and selectivity for cannabinoid type 1 receptor. 2011 J. Med. Chem. pmid:22044209
Brindisi M et al. Development and Pharmacological Characterization of Selective Blockers of 2-Arachidonoyl Glycerol Degradation with Efficacy in Rodent Models of Multiple Sclerosis and Pain. 2016 J. Med. Chem. pmid:26888301
Nithipatikom K et al. A novel activity of microsomal epoxide hydrolase: metabolism of the endocannabinoid 2-arachidonoylglycerol. 2014 J. Lipid Res. pmid:24958911
Pastor A et al. Analysis of ECs and related compounds in plasma: artifactual isomerization and ex vivo enzymatic generation of 2-MGs. 2014 J. Lipid Res. pmid:24610889
Fanelli F et al. Estimation of reference intervals of five endocannabinoids and endocannabinoid related compounds in human plasma by two dimensional-LC/MS/MS. 2012 J. Lipid Res. pmid:22172516
Dong L et al. Interactions of 2-O-arachidonylglycerol ether and ibuprofen with the allosteric and catalytic subunits of human COX-2. 2016 J. Lipid Res. pmid:27059979
Kantae V et al. Quantitative profiling of endocannabinoids and related -acylethanolamines in human CSF using nano LC-MS/MS. 2017 J. Lipid Res. pmid:27999147
Wollank Y et al. Inhibition of FAAH confers increased stem cell migration via PPARα. 2015 J. Lipid Res. pmid:26263913
Navia-Paldanius D et al. Biochemical and pharmacological characterization of human α/β-hydrolase domain containing 6 (ABHD6) and 12 (ABHD12). 2012 J. Lipid Res. pmid:22969151
Skonberg C et al. Pitfalls in the sample preparation and analysis of N-acylethanolamines. 2010 J. Lipid Res. pmid:20447930
Turcotte C et al. Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites. 2015 J. Leukoc. Biol. pmid:25877930
Oka S et al. 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces the migration of EoL-1 human eosinophilic leukemia cells and human peripheral blood eosinophils. 2004 J. Leukoc. Biol. pmid:15316028
Chouinard F et al. 2-Arachidonoyl-glycerol- and arachidonic acid-stimulated neutrophils release antimicrobial effectors against E. coli, S. aureus, HSV-1, and RSV. 2013 J. Leukoc. Biol. pmid:23242611
Kaplan BL et al. 2-Arachidonoyl-glycerol suppresses interferon-gamma production in phorbol ester/ionomycin-activated mouse splenocytes independent of CB1 or CB2. 2005 J. Leukoc. Biol. pmid:15774549
Sipe JC et al. Reduced endocannabinoid immune modulation by a common cannabinoid 2 (CB2) receptor gene polymorphism: possible risk for autoimmune disorders. 2005 J. Leukoc. Biol. pmid:15845647
Czifra G et al. Endocannabinoids regulate growth and survival of human eccrine sweat gland-derived epithelial cells. 2012 J. Invest. Dermatol. pmid:22513781
Marazzi J et al. Endocannabinoid content in fetal bovine sera - unexpected effects on mononuclear cells and osteoclastogenesis. 2011 J. Immunol. Methods pmid:21920367
Sancho R et al. Mechanisms of HIV-1 inhibition by the lipid mediator N-arachidonoyldopamine. 2005 J. Immunol. pmid:16148147
Bari M et al. Effect of lipid rafts on Cb2 receptor signaling and 2-arachidonoyl-glycerol metabolism in human immune cells. 2006 J. Immunol. pmid:17015679
Lu TS et al. Cannabinoids inhibit HIV-1 Gp120-mediated insults in brain microvascular endothelial cells. 2008 J. Immunol. pmid:18941231
Oka S et al. Involvement of the cannabinoid CB2 receptor and its endogenous ligand 2-arachidonoylglycerol in oxazolone-induced contact dermatitis in mice. 2006 J. Immunol. pmid:17142782
Chouinard F et al. The endocannabinoid 2-arachidonoyl-glycerol activates human neutrophils: critical role of its hydrolysis and de novo leukotriene B4 biosynthesis. 2011 J. Immunol. pmid:21278347
Gaskari SA et al. Blunted cardiac response to hemorrhage in cirrhotic rats is mediated by local macrophage-released endocannabinoids. 2015 J. Hepatol. pmid:25640062
Muppidi JR et al. Cannabinoid receptor 2 positions and retains marginal zone B cells within the splenic marginal zone. 2011 J. Exp. Med. pmid:21875957
Bowman AL and Makriyannis A Refined homology model of monoacylglycerol lipase: toward a selective inhibitor. 2009 J. Comput. Aided Mol. Des. pmid:19543978
Li Q and Burrell BD Two forms of long-term depression in a polysynaptic pathway in the leech CNS: one NMDA receptor-dependent and the other cannabinoid-dependent. 2009 J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. pmid:19657662
Suárez J et al. Endocannabinoid system in the adult rat circumventricular areas: an immunohistochemical study. 2010 J. Comp. Neurol. pmid:20533360
Hanlon EC et al. Circadian rhythm of circulating levels of the endocannabinoid 2-arachidonoylglycerol. 2015 J. Clin. Endocrinol. Metab. pmid:25368979
Heinitz S et al. Peripheral Endocannabinoids Associated With Energy Expenditure in Native Americans of Southwestern Heritage. 2018 J. Clin. Endocrinol. Metab. pmid:29300902
Monteleone P et al. Hedonic eating is associated with increased peripheral levels of ghrelin and the endocannabinoid 2-arachidonoyl-glycerol in healthy humans: a pilot study. 2012 J. Clin. Endocrinol. Metab. pmid:22442280
Jumpertz R et al. Central and peripheral endocannabinoids and cognate acylethanolamides in humans: association with race, adiposity, and energy expenditure. 2011 J. Clin. Endocrinol. Metab. pmid:21177788
Obata T et al. Simultaneous determination of endocannabinoids (arachidonylethanolamide and 2-arachidonylglycerol) and isoprostane (8-epiprostaglandin F2alpha) by gas chromatography-mass spectrometry-selected ion monitoring for medical samples. 2003 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:12829006
Zoerner AA et al. Simultaneous UPLC-MS/MS quantification of the endocannabinoids 2-arachidonoyl glycerol (2AG), 1-arachidonoyl glycerol (1AG), and anandamide in human plasma: minimization of matrix-effects, 2AG/1AG isomerization and degradation by toluene solvent extraction. 2012 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:21752730
Mwanza C et al. Simultaneous HPLC-APCI-MS/MS quantification of endogenous cannabinoids and glucocorticoids in hair. 2016 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:27318292
Zhang J et al. Inhibition of monoacylglycerol lipase prevents chronic traumatic encephalopathy-like neuropathology in a mouse model of repetitive mild closed head injury. 2015 J. Cereb. Blood Flow Metab. pmid:25492114
Panikashvili D et al. CB1 cannabinoid receptors are involved in neuroprotection via NF-kappa B inhibition. 2005 J. Cereb. Blood Flow Metab. pmid:15729296
Pisanti S et al. Anandamide drives cell cycle progression through CB1 receptors in a rat model of synchronized liver regeneration. 2015 J. Cell. Physiol. pmid:25684344
Signorello MG and Leoncini G Regulation of cAMP Intracellular Levels in Human Platelets Stimulated by 2-Arachidonoylglycerol. 2016 J. Cell. Biochem. pmid:26460717
Signorello MG and Leoncini G Activation of CaMKKβ/AMPKα pathway by 2-AG in human platelets. 2018 J. Cell. Biochem. pmid:28661046
Signorello MG et al. Activation by 2-arachidonoylglycerol of platelet p38MAPK/cPLA2 pathway. 2011 J. Cell. Biochem. pmid:21608016
Bisogno T et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. 2003 J. Cell Biol. pmid:14610053
Schaich CL et al. Alterations in the Medullary Endocannabinoid System Contribute to Age-related Impairment of Baroreflex Sensitivity. 2015 J. Cardiovasc. Pharmacol. pmid:25636077
Wang PF et al. Cannabinoid-2 receptor activation protects against infarct and ischemia-reperfusion heart injury. 2012 J. Cardiovasc. Pharmacol. pmid:22113346
Wagner JA et al. 2-Arachidonylglycerol acting on CB1 cannabinoid receptors mediates delayed cardioprotection induced by nitric oxide in rat isolated hearts. 2006 J. Cardiovasc. Pharmacol. pmid:16775503
Wagner JA et al. Coronary vasodilator effects of endogenous cannabinoids in vasopressin-preconstricted unpaced rat isolated hearts. 2005 J. Cardiovasc. Pharmacol. pmid:16116341
Kishimoto S et al. 2-arachidonoylglycerol induces the migration of HL-60 cells differentiated into macrophage-like cells and human peripheral blood monocytes through the cannabinoid CB2 receptor-dependent mechanism. 2003 J. Biol. Chem. pmid:12711605
Pucci M et al. Endocannabinoids stimulate human melanogenesis via type-1 cannabinoid receptor. 2012 J. Biol. Chem. pmid:22431736
Kozak KR et al. Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2. 2000 J. Biol. Chem. pmid:10931854
Chanda D et al. Cannabinoid receptor type 1 (CB1R) signaling regulates hepatic gluconeogenesis via induction of endoplasmic reticulum-bound transcription factor cAMP-responsive element-binding protein H (CREBH) in primary hepatocytes. 2011 J. Biol. Chem. pmid:21693703
Marrs WR et al. Dual inhibition of alpha/beta-hydrolase domain 6 and fatty acid amide hydrolase increases endocannabinoid levels in neurons. 2011 J. Biol. Chem. pmid:21665953
Sugiura T et al. Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor. Comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells. 2000 J. Biol. Chem. pmid:10617657
Oka S et al. Evidence for the involvement of the cannabinoid CB2 receptor and its endogenous ligand 2-arachidonoylglycerol in 12-O-tetradecanoylphorbol-13-acetate-induced acute inflammation in mouse ear. 2005 J. Biol. Chem. pmid:15749716
Zhao Q et al. 2-Arachidonoylglycerol stimulates activator protein-1-dependent transcriptional activity and enhances epidermal growth factor-induced cell transformation in JB6 P+ cells. 2005 J. Biol. Chem. pmid:15886210
Rouzer CA and Marnett LJ Glycerylprostaglandin synthesis by resident peritoneal macrophages in response to a zymosan stimulus. 2005 J. Biol. Chem. pmid:15917246
Kola B et al. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. 2005 J. Biol. Chem. pmid:15899896
Malenczyk K et al. CB1 cannabinoid receptors couple to focal adhesion kinase to control insulin release. 2013 J. Biol. Chem. pmid:24089517
Grabner GF et al. Deletion of Monoglyceride Lipase in Astrocytes Attenuates Lipopolysaccharide-induced Neuroinflammation. 2016 J. Biol. Chem. pmid:26565024
Chanda D et al. 2-Arachidonoylglycerol ameliorates inflammatory stress-induced insulin resistance in cardiomyocytes. 2017 J. Biol. Chem. pmid:28320859
Zhang J and Chen C Endocannabinoid 2-arachidonoylglycerol protects neurons by limiting COX-2 elevation. 2008 J. Biol. Chem. pmid:18534982
Manna JD et al. Identification of the major prostaglandin glycerol ester hydrolase in human cancer cells. 2014 J. Biol. Chem. pmid:25301951