2-arachidonoylglycerol

2-arachidonoylglycerol is a lipid of Glycerolipids (GL) class. 2-arachidonoylglycerol is associated with abnormalities such as Atherosclerosis, Heart Diseases, Inflammatory disorder, Colitis and Peripheral Neuropathy. The involved functions are known as Immunoreactivity, inhibitors, Stimulus, Esthesia and Signal Transduction. 2-arachidonoylglycerol often locates in Back, Presynaptic Terminals, Brain region, Blood and Body tissue. The associated genes with 2-arachidonoylglycerol are ADRBK1 gene, Homologous Gene, MGLL gene, PLA2G4A gene and peptide V. The related lipids are oleoylethanolamide, Lipopolysaccharides, Promega, stearic acid and 1-stearoyl-2-arachidonoylglycerol. The related experimental models are Knock-out.

Cross Reference

Introduction

To understand associated biological information of 2-arachidonoylglycerol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2-arachidonoylglycerol?

2-arachidonoylglycerol is suspected in Atherosclerosis, Heart Diseases, Sweet's Syndrome, Colitis, Dehydration, Diabetes and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2-arachidonoylglycerol

MeSH term MeSH ID Detail
Memory Disorders D008569 33 associated lipids
Acute Lung Injury D055371 33 associated lipids
Peripheral Nervous System Diseases D010523 33 associated lipids
Neurodegenerative Diseases D019636 32 associated lipids
Endometrial Neoplasms D016889 30 associated lipids
Catalepsy D002375 30 associated lipids
Obesity D009765 29 associated lipids
Neuralgia D009437 28 associated lipids
Hyperinsulinism D006946 27 associated lipids
Cardiovascular Diseases D002318 24 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Myocardial Reperfusion Injury D015428 20 associated lipids
Parkinsonian Disorders D020734 20 associated lipids
Dermatitis, Allergic Contact D017449 20 associated lipids
Brain Edema D001929 20 associated lipids
Hypothermia D007035 19 associated lipids
Liver Cirrhosis, Alcoholic D008104 17 associated lipids
Encephalitis D004660 15 associated lipids
Hyperkinesis D006948 11 associated lipids
Per page 10 20 50 100 | Total 51

PubChem Associated disorders and diseases

What pathways are associated with 2-arachidonoylglycerol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2-arachidonoylglycerol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2-arachidonoylglycerol?

Knock-out

Knock-out are used in the study 'Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice.' (Walentiny DM et al., 2015), Knock-out are used in the study 'Biochemical and pharmacological characterization of human α/β-hydrolase domain containing 6 (ABHD6) and 12 (ABHD12).' (Navia-Paldanius D et al., 2012) and Knock-out are used in the study 'Metabolic Interplay between Astrocytes and Neurons Regulates Endocannabinoid Action.' (Viader A et al., 2015).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 2-arachidonoylglycerol

Download all related citations
Per page 10 20 50 100 | Total 1060
Authors Title Published Journal PubMed Link
Shonesy BC et al. Genetic disruption of 2-arachidonoylglycerol synthesis reveals a key role for endocannabinoid signaling in anxiety modulation. 2014 Cell Rep pmid:25466252
Gasperi V et al. 2-Arachidonoylglycerol enhances platelet formation from human megakaryoblasts. 2014 Cell Cycle pmid:25427281
Smaga I et al. Antidepressants and changes in concentration of endocannabinoids and N-acylethanolamines in rat brain structures. 2014 Neurotox Res pmid:24652522
Kohnz RA and Nomura DK Chemical approaches to therapeutically target the metabolism and signaling of the endocannabinoid 2-AG and eicosanoids. 2014 Chem Soc Rev pmid:24676249
Pastor A et al. Analysis of ECs and related compounds in plasma: artifactual isomerization and ex vivo enzymatic generation of 2-MGs. 2014 J. Lipid Res. pmid:24610889
Stanley CP and O'Sullivan SE Cyclooxygenase metabolism mediates vasorelaxation to 2-arachidonoylglycerol (2-AG) in human mesenteric arteries. 2014 Pharmacol. Res. pmid:24548820
Pérez-Morales M et al. 2-Arachidonoylglycerol into the lateral hypothalamus improves reduced sleep in adult rats subjected to maternal separation. 2014 Neuroreport pmid:25356522
Signorello MG and Leoncini G Effect of 2-arachidonoylglycerol on myosin light chain phosphorylation and platelet activation: The role of phosphatidylinositol 3 kinase/AKT pathway. 2014 Biochimie pmid:25068972
Morena M et al. Endogenous cannabinoid release within prefrontal-limbic pathways affects memory consolidation of emotional training. 2014 Proc. Natl. Acad. Sci. U.S.A. pmid:25489086
Wiley JL et al. Endocannabinoid contribution to Δ9-tetrahydrocannabinol discrimination in rodents. 2014 Eur. J. Pharmacol. pmid:24858366
Nader J et al. Prior stimulation of the endocannabinoid system prevents methamphetamine-induced dopaminergic neurotoxicity in the striatum through activation of CB2 receptors. 2014 Neuropharmacology pmid:24709540
Sun LJ et al. Endocannabinoid system activation contributes to glucose metabolism disorders of hepatocytes and promotes hepatitis C virus replication. 2014 Int. J. Infect. Dis. pmid:24704332
Basavarajappa BS et al. Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice. 2014 Hippocampus pmid:24648181
Aaltonen N et al. Brain regional cannabinoid CB(1) receptor signalling and alternative enzymatic pathways for 2-arachidonoylglycerol generation in brain sections of diacylglycerol lipase deficient mice. 2014 Eur J Pharm Sci pmid:24012970
Brantl SA et al. Activation of platelets by the endocannabinoids 2-arachidonoylglycerol and virodhamine is mediated by their conversion to arachidonic acid and thromboxane A2, not by activation of cannabinoid receptors. 2014 Platelets pmid:24102401
Iannotti FA et al. The endocannabinoid 2-AG controls skeletal muscle cell differentiation via CB1 receptor-dependent inhibition of Kv7 channels. 2014 Proc. Natl. Acad. Sci. U.S.A. pmid:24927567
Pertwee RG Elevating endocannabinoid levels: pharmacological strategies and potential therapeutic applications. 2014 Proc Nutr Soc pmid:24135210
Burston JJ and Woodhams SG Endocannabinoid system and pain: an introduction. 2014 Proc Nutr Soc pmid:24148358
Desroches J et al. Endocannabinoids decrease neuropathic pain-related behavior in mice through the activation of one or both peripheral CB₁ and CB₂ receptors. 2014 Neuropharmacology pmid:24148808
Yang K et al. Differential regulation of NMDAR and NMDAR-mediated metaplasticity by anandamide and 2-AG in the hippocampus. 2014 Hippocampus pmid:25087967
Fezza F et al. Distinct modulation of the endocannabinoid system upon kainic acid-induced in vivo seizures and in vitro epileptiform bursting. 2014 Mol. Cell. Neurosci. pmid:25064144
Sanson B et al. Crystallographic study of FABP5 as an intracellular endocannabinoid transporter. 2014 Acta Crystallogr. D Biol. Crystallogr. pmid:24531463
Schaefer C et al. Fatty acid ethanolamide levels are altered in borderline personality and complex posttraumatic stress disorders. 2014 Eur Arch Psychiatry Clin Neurosci pmid:24253425
Limebeer CL et al. Attenuation of anticipatory nausea in a rat model of contextually elicited conditioned gaping by enhancement of the endocannabinoid system. 2014 Psychopharmacology (Berl.) pmid:24043345
Pascual AC et al. Aging modifies the enzymatic activities involved in 2-arachidonoylglycerol metabolism. 2013 Mar-Apr Biofactors pmid:23281018
Fonseca BM et al. Endogenous cannabinoids revisited: a biochemistry perspective. 2013 Apr-May Prostaglandins Other Lipid Mediat. pmid:23474290
Fagundo AB et al. Modulation of the Endocannabinoids N-Arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) on Executive Functions in Humans. 2013 PLoS ONE pmid:23840456
Chouinard F et al. 2-Arachidonoyl-glycerol- and arachidonic acid-stimulated neutrophils release antimicrobial effectors against E. coli, S. aureus, HSV-1, and RSV. 2013 J. Leukoc. Biol. pmid:23242611
Rivera P et al. Cocaine self-administration differentially modulates the expression of endogenous cannabinoid system-related proteins in the hippocampus of Lewis vs. Fischer 344 rats. 2013 Int. J. Neuropsychopharmacol. pmid:23217608
Valdeolivas S et al. The inhibition of 2-arachidonoyl-glycerol (2-AG) biosynthesis, rather than enhancing striatal damage, protects striatal neurons from malonate-induced death: a potential role of cyclooxygenase-2-dependent metabolism of 2-AG. 2013 Cell Death Dis pmid:24136226
Jäntti MH et al. Autocrine endocannabinoid signaling through CB1 receptors potentiates OX1 orexin receptor signaling. 2013 Mol. Pharmacol. pmid:23233488
Su LD et al. Retrograde cPLA2α/arachidonic acid/2-AG signaling is essential for cerebellar depolarization-induced suppression of excitation and long-term potentiation. 2013 Cerebellum pmid:23307660
Keimpema E et al. Nerve growth factor scales endocannabinoid signaling by regulating monoacylglycerol lipase turnover in developing cholinergic neurons. 2013 Proc. Natl. Acad. Sci. U.S.A. pmid:23319656
Shimizu T et al. Stimulatory and inhibitory roles of brain 2-arachidonoylglycerol in bombesin-induced central activation of adrenomedullary outflow in rats. 2013 J. Pharmacol. Sci. pmid:23386378
Tchantchou F and Zhang Y Selective inhibition of alpha/beta-hydrolase domain 6 attenuates neurodegeneration, alleviates blood brain barrier breakdown, and improves functional recovery in a mouse model of traumatic brain injury. 2013 J. Neurotrauma pmid:23151067
Alhouayek M et al. Implication of the anti-inflammatory bioactive lipid prostaglandin D2-glycerol ester in the control of macrophage activation and inflammation by ABHD6. 2013 Proc. Natl. Acad. Sci. U.S.A. pmid:24101490
Iannotti FA et al. Analysis of the "endocannabinoidome" in peripheral tissues of obese Zucker rats. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:23830028
Citraro R et al. Antiepileptic action of N-palmitoylethanolamine through CB1 and PPAR-α receptor activation in a genetic model of absence epilepsy. 2013 Neuropharmacology pmid:23206503
Lindgren CA et al. Cyclooxygenase-2, prostaglandin E2 glycerol ester and nitric oxide are involved in muscarine-induced presynaptic enhancement at the vertebrate neuromuscular junction. 2013 J. Physiol. (Lond.) pmid:23818695
Frazier CJ Preformed vs. on-demand: molecular economics of endocannabinoid signalling. 2013 J. Physiol. (Lond.) pmid:24085490
Descalzi F et al. Platelet-rich plasma exerts antinociceptive activity by a peripheral endocannabinoid-related mechanism. 2013 Tissue Eng Part A pmid:23578218
Bisogno T et al. A novel fluorophosphonate inhibitor of the biosynthesis of the endocannabinoid 2-arachidonoylglycerol with potential anti-obesity effects. 2013 Br. J. Pharmacol. pmid:23072382
Zygmunt PM et al. Monoacylglycerols activate TRPV1--a link between phospholipase C and TRPV1. 2013 PLoS ONE pmid:24312564
Wang R et al. Identification of palmitoyl protein thioesterase 1 in human THP1 monocytes and macrophages and characterization of unique biochemical activities for this enzyme. 2013 Biochemistry pmid:24083319
Hill MN et al. Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the World Trade Center attacks. 2013 Psychoneuroendocrinology pmid:24035186
Bernabò N et al. Systems biology analysis of the endocannabinoid system reveals a scale-free network with distinct roles for anandamide and 2-arachidonoylglycerol. 2013 OMICS pmid:24117401
Gesell FK et al. Alterations of endocannabinoids in cerebrospinal fluid of dogs with epileptic seizure disorder. 2013 BMC Vet. Res. pmid:24370333
Shinjyo N et al. Impact of omega-6 polyunsaturated fatty acid supplementation and γ-aminobutyric acid on astrogliogenesis through the endocannabinoid system. 2013 J. Neurosci. Res. pmid:23633391
Malenczyk K et al. CB1 cannabinoid receptors couple to focal adhesion kinase to control insulin release. 2013 J. Biol. Chem. pmid:24089517
Brocato B et al. Endocannabinoid crosstalk between placenta and maternal fat in a baboon model (Papio spp.) of obesity. 2013 Placenta pmid:24008071