2-arachidonoylglycerol

2-arachidonoylglycerol is a lipid of Glycerolipids (GL) class. 2-arachidonoylglycerol is associated with abnormalities such as Atherosclerosis, Heart Diseases, Inflammatory disorder, Colitis and Peripheral Neuropathy. The involved functions are known as Immunoreactivity, inhibitors, Stimulus, Esthesia and Signal Transduction. 2-arachidonoylglycerol often locates in Back, Presynaptic Terminals, Brain region, Blood and Body tissue. The associated genes with 2-arachidonoylglycerol are ADRBK1 gene, Homologous Gene, MGLL gene, PLA2G4A gene and peptide V. The related lipids are oleoylethanolamide, Lipopolysaccharides, Promega, stearic acid and 1-stearoyl-2-arachidonoylglycerol. The related experimental models are Knock-out.

Cross Reference

Introduction

To understand associated biological information of 2-arachidonoylglycerol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2-arachidonoylglycerol?

2-arachidonoylglycerol is suspected in Atherosclerosis, Heart Diseases, Sweet's Syndrome, Colitis, Dehydration, Diabetes and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2-arachidonoylglycerol

MeSH term MeSH ID Detail
Acute Pain D059787 3 associated lipids
Per page 10 20 50 100 | Total 51

PubChem Associated disorders and diseases

What pathways are associated with 2-arachidonoylglycerol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2-arachidonoylglycerol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2-arachidonoylglycerol?

Knock-out

Knock-out are used in the study 'Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice.' (Walentiny DM et al., 2015), Knock-out are used in the study 'Biochemical and pharmacological characterization of human α/β-hydrolase domain containing 6 (ABHD6) and 12 (ABHD12).' (Navia-Paldanius D et al., 2012) and Knock-out are used in the study 'Metabolic Interplay between Astrocytes and Neurons Regulates Endocannabinoid Action.' (Viader A et al., 2015).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 2-arachidonoylglycerol

Download all related citations
Per page 10 20 50 100 | Total 1060
Authors Title Published Journal PubMed Link
Nomura DK et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. 2011 Science pmid:22021672
Muppidi JR et al. Cannabinoid receptor 2 positions and retains marginal zone B cells within the splenic marginal zone. 2011 J. Exp. Med. pmid:21875957
Zhang L et al. Endocannabinoids generated by Ca2+ or by metabotropic glutamate receptors appear to arise from different pools of diacylglycerol lipase. 2011 PLoS ONE pmid:21305054
Schalk-Hihi C et al. Crystal structure of a soluble form of human monoglyceride lipase in complex with an inhibitor at 1.35 Ã… resolution. 2011 Protein Sci. pmid:21308848
Duggan KC et al. (R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2. 2011 Nat. Chem. Biol. pmid:22053353
Puente N et al. Polymodal activation of the endocannabinoid system in the extended amygdala. 2011 Nat. Neurosci. pmid:22057189
Stella N Cell biology. Anatomy of prostaglandin signals. 2011 Science pmid:22076368
Patsenker E et al. Cannabinoid receptor type I modulates alcohol-induced liver fibrosis. 2011 Mol. Med. pmid:21863215
Hill MN et al. Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response. 2011 J. Neurosci. pmid:21775596
Bari M et al. Characterization of the endocannabinoid system in mouse embryonic stem cells. 2011 Stem Cells Dev. pmid:20446814
Ludányi A et al. Complementary synaptic distribution of enzymes responsible for synthesis and inactivation of the endocannabinoid 2-arachidonoylglycerol in the human hippocampus. 2011 Neuroscience pmid:21035522
Martín-Couce L et al. Development of endocannabinoid-based chemical probes for the study of cannabinoid receptors. 2011 J. Med. Chem. pmid:21675776
Chanda D et al. Cannabinoid receptor type 1 (CB1R) signaling regulates hepatic gluconeogenesis via induction of endoplasmic reticulum-bound transcription factor cAMP-responsive element-binding protein H (CREBH) in primary hepatocytes. 2011 J. Biol. Chem. pmid:21693703
Signorello MG et al. Activation of human platelets by 2-arachidonoylglycerol: role of PKC in NO/cGMP pathway modulation. 2011 Curr Neurovasc Res pmid:21675954
Marrs WR et al. Dual inhibition of alpha/beta-hydrolase domain 6 and fatty acid amide hydrolase increases endocannabinoid levels in neurons. 2011 J. Biol. Chem. pmid:21665953
Gantayet A et al. Endocannabinoids and diacylglycerol kinase activity. 2011 Biochim. Biophys. Acta pmid:21194521
Duclos RI et al. A methodology for radiolabeling of the endocannabinoid 2-arachidonoylglycerol (2-AG). 2011 J. Org. Chem. pmid:21370840
Shimizu T et al. Endogenously generated 2-arachidonoylglycerol plays an inhibitory role in bombesin-induced activation of central adrenomedullary outflow in rats. 2011 Eur. J. Pharmacol. pmid:21371452
Lourbopoulos A et al. Administration of 2-arachidonoylglycerol ameliorates both acute and chronic experimental autoimmune encephalomyelitis. 2011 Brain Res. pmid:21406188
Kortleven C et al. The endocannabinoid 2-arachidonoylglycerol inhibits long-term potentiation of glutamatergic synapses onto ventral tegmental area dopamine neurons in mice. 2011 Eur. J. Neurosci. pmid:21410793
Oudin MJ et al. Endocannabinoids regulate the migration of subventricular zone-derived neuroblasts in the postnatal brain. 2011 J. Neurosci. pmid:21411643
Hashimotodani Y et al. Neuronal protease-activated receptor 1 drives synaptic retrograde signaling mediated by the endocannabinoid 2-arachidonoylglycerol. 2011 J. Neurosci. pmid:21414931
Taschler U et al. Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance. 2011 J. Biol. Chem. pmid:21454566
Mulder J et al. Molecular reorganization of endocannabinoid signalling in Alzheimer's disease. 2011 Brain pmid:21459826
Carr RL et al. Effect of developmental chlorpyrifos exposure, on endocannabinoid metabolizing enzymes, in the brain of juvenile rats. 2011 Toxicol. Sci. pmid:21507991
Chiba T et al. A synthetic cannabinoid, CP55940, inhibits lipopolysaccharide-induced cytokine mRNA expression in a cannabinoid receptor-independent mechanism in rat cerebellar granule cells. 2011 J. Pharm. Pharmacol. pmid:21492165
De Petrocellis L et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. 2011 Br. J. Pharmacol. pmid:21175579
Jumpertz R et al. Central and peripheral endocannabinoids and cognate acylethanolamides in humans: association with race, adiposity, and energy expenditure. 2011 J. Clin. Endocrinol. Metab. pmid:21177788
Di Marzo V Endocannabinoid signaling in the brain: biosynthetic mechanisms in the limelight. 2011 Nat. Neurosci. pmid:21187849
Alhouayek M et al. Increasing endogenous 2-arachidonoylglycerol levels counteracts colitis and related systemic inflammation. 2011 FASEB J. pmid:21551239
Justinová Z et al. The endogenous cannabinoid 2-arachidonoylglycerol is intravenously self-administered by squirrel monkeys. 2011 J. Neurosci. pmid:21562266
Borges BC et al. Leptin resistance and desensitization of hypophagia during prolonged inflammatory challenge. 2011 Am. J. Physiol. Endocrinol. Metab. pmid:21343543
Quercioli A et al. Elevated endocannabinoid plasma levels are associated with coronary circulatory dysfunction in obesity. 2011 Eur. Heart J. pmid:21303779
Ueda N et al. Biosynthesis and degradation of the endocannabinoid 2-arachidonoylglycerol. 2011 Jan-Feb Biofactors pmid:21328621
Haas MJ et al. Inhibition of apolipoprotein A-I gene expression by obesity-associated endocannabinoids. 2012 Obesity (Silver Spring) pmid:22016100
Forsell PK et al. Metabolism of anandamide into eoxamides by 15-lipoxygenase-1 and glutathione transferases. 2012 Lipids pmid:22684912
Wu X et al. Alteration of endocannabinoid system in human gliomas. 2012 J. Neurochem. pmid:22176552
Wang M et al. Acute restraint stress enhances hippocampal endocannabinoid function via glucocorticoid receptor activation. 2012 J. Psychopharmacol. (Oxford) pmid:21890595
Savinainen JR et al. The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors. 2012 Acta Physiol (Oxf) pmid:21418147
Mimura T et al. Involvement of the endogenous cannabinoid 2 ligand 2-arachidonyl glycerol in allergic inflammation. 2012 Int. Arch. Allergy Immunol. pmid:22652530
Luchicchi A and Pistis M Anandamide and 2-arachidonoylglycerol: pharmacological properties, functional features, and emerging specificities of the two major endocannabinoids. 2012 Mol. Neurobiol. pmid:22801993
Jung KM et al. 2-arachidonoylglycerol signaling in forebrain regulates systemic energy metabolism. 2012 Cell Metab. pmid:22405068
Krishnan G and Chatterjee N Endocannabinoids alleviate proinflammatory conditions by modulating innate immune response in muller glia during inflammation. 2012 Glia pmid:22807196
Lara-Celador I et al. Endocannabinoids reduce cerebral damage after hypoxic-ischemic injury in perinatal rats. 2012 Brain Res. pmid:22841538
Hsu KL et al. DAGLβ inhibition perturbs a lipid network involved in macrophage inflammatory responses. 2012 Nat. Chem. Biol. pmid:23103940
Reisenberg M et al. The diacylglycerol lipases: structure, regulation and roles in and beyond endocannabinoid signalling. 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108545
Melis M and Pistis M Hub and switches: endocannabinoid signalling in midbrain dopamine neurons. 2012 Philos. Trans. R. Soc. Lond., B, Biol. Sci. pmid:23108546
Chanda D et al. Activation of cannabinoid receptor type 1 (Cb1r) disrupts hepatic insulin receptor signaling via cyclic AMP-response element-binding protein H (Crebh)-mediated induction of Lipin1 gene. 2012 J. Biol. Chem. pmid:22989885
Sticht MA et al. Inhibition of monoacylglycerol lipase attenuates vomiting in Suncus murinus and 2-arachidonoyl glycerol attenuates nausea in rats. 2012 Br. J. Pharmacol. pmid:21470205
Alger BE Endocannabinoids at the synapse a decade after the dies mirabilis (29 March 2001): what we still do not know. 2012 J. Physiol. (Lond.) pmid:22289914