2-arachidonoylglycerol

2-arachidonoylglycerol is a lipid of Glycerolipids (GL) class. 2-arachidonoylglycerol is associated with abnormalities such as Atherosclerosis, Heart Diseases, Inflammatory disorder, Colitis and Peripheral Neuropathy. The involved functions are known as Immunoreactivity, inhibitors, Stimulus, Esthesia and Signal Transduction. 2-arachidonoylglycerol often locates in Back, Presynaptic Terminals, Brain region, Blood and Body tissue. The associated genes with 2-arachidonoylglycerol are ADRBK1 gene, Homologous Gene, MGLL gene, PLA2G4A gene and peptide V. The related lipids are oleoylethanolamide, Lipopolysaccharides, Promega, stearic acid and 1-stearoyl-2-arachidonoylglycerol. The related experimental models are Knock-out.

Cross Reference

Introduction

To understand associated biological information of 2-arachidonoylglycerol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2-arachidonoylglycerol?

2-arachidonoylglycerol is suspected in Atherosclerosis, Heart Diseases, Sweet's Syndrome, Colitis, Dehydration, Diabetes and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2-arachidonoylglycerol

MeSH term MeSH ID Detail
Stomach Ulcer D013276 75 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Pain D010146 64 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Body Weight D001835 333 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Hypotension D007022 41 associated lipids
Per page 10 20 50 100 | Total 51

PubChem Associated disorders and diseases

What pathways are associated with 2-arachidonoylglycerol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2-arachidonoylglycerol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2-arachidonoylglycerol?

Knock-out

Knock-out are used in the study 'Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice.' (Walentiny DM et al., 2015), Knock-out are used in the study 'Biochemical and pharmacological characterization of human α/β-hydrolase domain containing 6 (ABHD6) and 12 (ABHD12).' (Navia-Paldanius D et al., 2012) and Knock-out are used in the study 'Metabolic Interplay between Astrocytes and Neurons Regulates Endocannabinoid Action.' (Viader A et al., 2015).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 2-arachidonoylglycerol

Download all related citations
Per page 10 20 50 100 | Total 1060
Authors Title Published Journal PubMed Link
Rademacher DJ et al. Waterborne lead exposure affects brain endocannabinoid content in male but not female fathead minnows (Pimephales promelas). 2005 Neurotoxicology pmid:15527869
Liu J et al. Comparative effects of parathion and chlorpyrifos on endocannabinoid and endocannabinoid-like lipid metabolites in rat striatum. 2015 Neurotoxicology pmid:26215119
Smaga I et al. Antidepressants and changes in concentration of endocannabinoids and N-acylethanolamines in rat brain structures. 2014 Neurotox Res pmid:24652522
Smaga I et al. Changes in the Brain Endocannabinoid System in Rat Models of Depression. 2017 Neurotox Res pmid:28247204
Gopez JJ et al. Cyclooxygenase-2-specific inhibitor improves functional outcomes, provides neuroprotection, and reduces inflammation in a rat model of traumatic brain injury. 2005 Neurosurgery pmid:15730585
Urbanski MJ et al. Endocannabinoid-mediated synaptically evoked suppression of GABAergic transmission in the cerebellar cortex. 2010 Neuroscience pmid:20553815
Zhang L et al. Endocannabinoid 2-AG and intracellular cannabinoid receptors modulate a low-threshold calcium spike-induced slow depolarizing afterpotential in rat thalamic paraventricular nucleus neurons. 2016 Neuroscience pmid:26924019
Turunen PM et al. Endocannabinoid Signaling in Embryonic Neuronal Motility and Cell-Cell Contact - Role of mGluR5 and TRPC3 Channels. 2018 Neuroscience pmid:29438802
Dowie MJ et al. Altered CB1 receptor and endocannabinoid levels precede motor symptom onset in a transgenic mouse model of Huntington's disease. 2009 Neuroscience pmid:19524019
Straiker A and Mackie K Cannabinoid signaling in inhibitory autaptic hippocampal neurons. 2009 Neuroscience pmid:19501632
Pascual AC et al. 2-Arachidonoylglycerol metabolism is differently modulated by oligomeric and fibrillar conformations of amyloid beta in synaptic terminals. 2017 Neuroscience pmid:28844762
Roberts CJ et al. Swim stress differentially affects limbic contents of 2-arachidonoylglycerol and 2-oleoylglycerol. 2012 Neuroscience pmid:22192839
Musella A et al. Transient receptor potential vanilloid 1 channels control acetylcholine/2-arachidonoylglicerol coupling in the striatum. 2010 Neuroscience pmid:20219639
Ludányi A et al. Complementary synaptic distribution of enzymes responsible for synthesis and inactivation of the endocannabinoid 2-arachidonoylglycerol in the human hippocampus. 2011 Neuroscience pmid:21035522
Veeraraghavan P et al. A study of cannabinoid-1 receptors during the early phase of excitotoxic damage to rat spinal locomotor networks in vitro. 2016 Neuroscience pmid:27450568
Palkovits M et al. Regional distribution and effects of postmortal delay on endocannabinoid content of the human brain. 2008 Neuroscience pmid:18343585
Yang W et al. Cannabinoid receptor agonists modulate calcium channels in rat retinal Müller cells. 2016 Neuroscience pmid:26621126
Chen X et al. Endocannabinoid 2-arachidonoylglycerol protects neurons against β-amyloid insults. 2011 Neuroscience pmid:21256197
Petrosino S et al. Alteration of the endocannabinoid system in mouse brain during prion disease. 2011 Neuroscience pmid:21195746
Ikeda H et al. Activation of spinal cannabinoid CB2 receptors inhibits neuropathic pain in streptozotocin-induced diabetic mice. 2013 Neuroscience pmid:23892011
Sticht MA et al. Intra-visceral insular cortex 2-arachidonoylglycerol, but not N-arachidonoylethanolamide, suppresses acute nausea-induced conditioned gaping in rats. 2015 Neuroscience pmid:25499318
Palmer JA et al. Fatty acid amide hydrolase inhibition enhances the anti-allodynic actions of endocannabinoids in a model of acute pain adapted for the mouse. 2008 Neuroscience pmid:18541380
Hutch CR et al. An endocannabinoid system is present in the mouse olfactory epithelium but does not modulate olfaction. 2015 Neuroscience pmid:26037800
Rubio M et al. Short-term exposure to alcohol in rats affects brain levels of anandamide, other N-acylethanolamines and 2-arachidonoyl-glycerol. 2007 Neurosci. Lett. pmid:17574742
Sinor AD et al. Endocannabinoids protect cerebral cortical neurons from in vitro ischemia in rats. 2000 Neurosci. Lett. pmid:10653017
Sugiura T et al. Rapid generation of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, in rat brain after decapitation. 2001 Neurosci. Lett. pmid:11137756
Maison P et al. BDNF regulates neuronal sensitivity to endocannabinoids. 2009 Neurosci. Lett. pmid:19818836
Pérez-Morales M et al. 2-Arachidonoylglycerol into the lateral hypothalamus improves reduced sleep in adult rats subjected to maternal separation. 2014 Neuroreport pmid:25356522
Beltramo M and Piomelli D Carrier-mediated transport and enzymatic hydrolysis of the endogenous cannabinoid 2-arachidonylglycerol. 2000 Neuroreport pmid:10817598
Covey DP et al. Inhibition of endocannabinoid degradation rectifies motivational and dopaminergic deficits in the Q175 mouse model of Huntington's disease. 2018 Neuropsychopharmacology pmid:29925886
Wills KL et al. Double Dissociation of Monoacylglycerol Lipase Inhibition and CB1 Antagonism in the Central Amygdala, Basolateral Amygdala, and the Interoceptive Insular Cortex on the Affective Properties of Acute Naloxone-Precipitated Morphine Withdrawal in Rats. 2016 Neuropsychopharmacology pmid:26647976
Viganò D et al. Chronic morphine modulates the contents of the endocannabinoid, 2-arachidonoyl glycerol, in rat brain. 2003 Neuropsychopharmacology pmid:12637958
Morena M et al. Enhancing Endocannabinoid Neurotransmission Augments The Efficacy of Extinction Training and Ameliorates Traumatic Stress-Induced Behavioral Alterations in Rats. 2018 Neuropsychopharmacology pmid:29265107
Morena M et al. Neurobiological Interactions Between Stress and the Endocannabinoid System. 2016 Neuropsychopharmacology pmid:26068727
Sumislawski JJ et al. Reversible gating of endocannabinoid plasticity in the amygdala by chronic stress: a potential role for monoacylglycerol lipase inhibition in the prevention of stress-induced behavioral adaptation. 2011 Neuropsychopharmacology pmid:21849983
Dubreucq S et al. Genetic dissection of the role of cannabinoid type-1 receptors in the emotional consequences of repeated social stress in mice. 2012 Neuropsychopharmacology pmid:22434220
Oleson EB et al. Cannabinoid receptor activation shifts temporally engendered patterns of dopamine release. 2014 Neuropsychopharmacology pmid:24345819
Sarchielli P et al. Endocannabinoids in chronic migraine: CSF findings suggest a system failure. 2007 Neuropsychopharmacology pmid:17119542
Blasio A et al. Rimonabant precipitates anxiety in rats withdrawn from palatable food: role of the central amygdala. 2013 Neuropsychopharmacology pmid:23793355
Patel S et al. Repeated homotypic stress elevates 2-arachidonoylglycerol levels and enhances short-term endocannabinoid signaling at inhibitory synapses in basolateral amygdala. 2009 Neuropsychopharmacology pmid:19675536
Maccarrone M et al. Abnormal mGlu 5 receptor/endocannabinoid coupling in mice lacking FMRP and BC1 RNA. 2010 Neuropsychopharmacology pmid:20393458
Lim J et al. Endocannabinoid Modulation of Predator Stress-Induced Long-Term Anxiety in Rats. 2016 Neuropsychopharmacology pmid:26361059
Cristino L et al. Orexin-A and Endocannabinoid Activation of the Descending Antinociceptive Pathway Underlies Altered Pain Perception in Leptin Signaling Deficiency. 2016 Neuropsychopharmacology pmid:26081302
DeVuono MV et al. Conditioned gaping produced by high dose Δ-tetrahydracannabinol: Dysregulation of the hypothalamic endocannabinoid system. 2018 Neuropharmacology pmid:30195587
Ratano P et al. Pharmacological inhibition of 2-arachidonoilglycerol hydrolysis enhances memory consolidation in rats through CB2 receptor activation and mTOR signaling modulation. 2018 Neuropharmacology pmid:29842858
Shonesy BC et al. The initiation of synaptic 2-AG mobilization requires both an increased supply of diacylglycerol precursor and increased postsynaptic calcium. 2015 Neuropharmacology pmid:25484252
Atwood BK et al. CBâ‚‚ cannabinoid receptors inhibit synaptic transmission when expressed in cultured autaptic neurons. 2012 Neuropharmacology pmid:22579668
Shimizu T et al. Possible inhibitory role of endogenous 2-arachidonoylglycerol as an endocannabinoid in (±)-epibatidine-induced activation of central adrenomedullary outflow in the rat. 2015 Neuropharmacology pmid:25882827
Eroli F et al. Differential neuromodulatory role of endocannabinoids in the rodent trigeminal sensory ganglion and cerebral cortex relevant to pain processing. 2018 Neuropharmacology pmid:29225040
Walentiny DM et al. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice. 2015 Neuropharmacology pmid:25698527
Pasquarelli N et al. Evaluation of monoacylglycerol lipase as a therapeutic target in a transgenic mouse model of ALS. 2017 Neuropharmacology pmid:28373073
Kortleven C et al. Neurotensin inhibits glutamate-mediated synaptic inputs onto ventral tegmental area dopamine neurons through the release of the endocannabinoid 2-AG. 2012 Neuropharmacology pmid:22884466
Nader J et al. Prior stimulation of the endocannabinoid system prevents methamphetamine-induced dopaminergic neurotoxicity in the striatum through activation of CB2 receptors. 2014 Neuropharmacology pmid:24709540
Hashimotodani Y et al. Pharmacological evidence for the involvement of diacylglycerol lipase in depolarization-induced endocanabinoid release. 2008 Neuropharmacology pmid:17655882
Mátyás F et al. Identification of the sites of 2-arachidonoylglycerol synthesis and action imply retrograde endocannabinoid signaling at both GABAergic and glutamatergic synapses in the ventral tegmental area. 2008 Neuropharmacology pmid:17655884
Pasquarelli N et al. Comparative biochemical characterization of the monoacylglycerol lipase inhibitor KML29 in brain, spinal cord, liver, spleen, fat and muscle tissue. 2015 Neuropharmacology pmid:25497453
Moreira FA et al. Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) is mediated by CB1 receptors. 2008 Neuropharmacology pmid:17709120
Chiu CQ and Castillo PE Input-specific plasticity at excitatory synapses mediated by endocannabinoids in the dentate gyrus. 2008 Neuropharmacology pmid:17706254
Morena M et al. Emotional arousal state influences the ability of amygdalar endocannabinoid signaling to modulate anxiety. 2016 Neuropharmacology pmid:27553121
Vellani V et al. Functional lipidomics. Calcium-independent activation of endocannabinoid/endovanilloid lipid signalling in sensory neurons by protein kinases C and A and thrombin. 2008 Neuropharmacology pmid:18329052
Citraro R et al. Antiepileptic action of N-palmitoylethanolamine through CB1 and PPAR-α receptor activation in a genetic model of absence epilepsy. 2013 Neuropharmacology pmid:23206503
Rubio M et al. CB1 receptor blockade reduces the anxiogenic-like response and ameliorates the neurochemical imbalances associated with alcohol withdrawal in rats. 2008 Neuropharmacology pmid:18371990
Al-Hayani A et al. The endogenous cannabinoid anandamide activates vanilloid receptors in the rat hippocampal slice. 2001 Neuropharmacology pmid:11747904
Suplita RL et al. Endocannabinoids at the spinal level regulate, but do not mediate, nonopioid stress-induced analgesia. 2006 Neuropharmacology pmid:16316669
Darmani NA et al. Cisplatin increases brain 2-arachidonoylglycerol (2-AG) and concomitantly reduces intestinal 2-AG and anandamide levels in the least shrew. 2005 Neuropharmacology pmid:15921709
Desroches J et al. Endocannabinoids decrease neuropathic pain-related behavior in mice through the activation of one or both peripheral CB₁ and CB₂ receptors. 2014 Neuropharmacology pmid:24148808
Morgan NH et al. Functional CB2 type cannabinoid receptors at CNS synapses. 2009 Neuropharmacology pmid:19616018
Wilkerson JL et al. The endocannabinoid hydrolysis inhibitor SA-57: Intrinsic antinociceptive effects, augmented morphine-induced antinociception, and attenuated heroin seeking behavior in mice. 2017 Neuropharmacology pmid:27890602
Piomelli D The endogenous cannabinoid system and the treatment of marijuana dependence. 2004 Neuropharmacology pmid:15464150
Sticht MA et al. Endocannabinoid regulation of nausea is mediated by 2-arachidonoylglycerol (2-AG) in the rat visceral insular cortex. 2016 Neuropharmacology pmid:26541329
Placzek EA et al. Membrane microdomains and metabolic pathways that define anandamide and 2-arachidonyl glycerol biosynthesis and breakdown. 2008 Neuropharmacology pmid:18760289
Best AR and Regehr WG Identification of the synthetic pathway producing the endocannabinoid that mediates the bulk of retrograde signaling in the brain. 2010 Neuron pmid:20159441
Oleson EB et al. Endocannabinoids shape accumbal encoding of cue-motivated behavior via CB1 receptor activation in the ventral tegmentum. 2012 Neuron pmid:22284189
Safo PK and Regehr WG Endocannabinoids control the induction of cerebellar LTD. 2005 Neuron pmid:16301180
Gantz SC and Bean BP Cell-Autonomous Excitation of Midbrain Dopamine Neurons by Endocannabinoid-Dependent Lipid Signaling. 2017 Neuron pmid:28262417
Duan Y et al. Inhibition of [3H]batrachotoxinin A-20alpha-benzoate binding to sodium channels and sodium channel function by endocannabinoids. 2008 Neurochem. Int. pmid:17888543
Bardell TK and Barker EL Activation of TRPC6 channels promotes endocannabinoid biosynthesis in neuronal CAD cells. 2010 Neurochem. Int. pmid:20466028
Sang N et al. Anandamide potentiation of miniature spontaneous excitatory synaptic transmission is mediated via IP3 pathway. 2010 Neurochem. Int. pmid:20064571
Arevalo-Martin A et al. The endocannabinoid 2-arachidonoylglycerol reduces lesion expansion and white matter damage after spinal cord injury. 2010 Neurobiol. Dis. pmid:20156559
Piomelli D et al. Endogenous cannabinoid signaling. 1998 Neurobiol. Dis. pmid:9974178
Panikashvili D et al. The endocannabinoid 2-AG protects the blood-brain barrier after closed head injury and inhibits mRNA expression of proinflammatory cytokines. 2006 Neurobiol. Dis. pmid:16364651
Vázquez C et al. Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: In vivo studies. 2015 Neurobiol. Dis. pmid:25917763
Avraham Y et al. Endocannabinoids affect neurological and cognitive function in thioacetamide-induced hepatic encephalopathy in mice. 2006 Neurobiol. Dis. pmid:16102970
Garcia-Ovejero D et al. The endocannabinoid system is modulated in response to spinal cord injury in rats. 2009 Neurobiol. Dis. pmid:18930143
Melis M et al. Protective activation of the endocannabinoid system during ischemia in dopamine neurons. 2006 Neurobiol. Dis. pmid:16762556
Cabranes A et al. Decreased endocannabinoid levels in the brain and beneficial effects of agents activating cannabinoid and/or vanilloid receptors in a rat model of multiple sclerosis. 2005 Neurobiol. Dis. pmid:16242629
Fernández-Suárez D et al. Monoacylglycerol lipase inhibitor JZL184 is neuroprotective and alters glial cell phenotype in the chronic MPTP mouse model. 2014 Neurobiol. Aging pmid:24973119
Feliszek M et al. Lack of hippocampal CB1 receptor desensitization by Δ(9)-tetrahydrocannabinol in aged mice and by low doses of JZL 184. 2016 Naunyn Schmiedebergs Arch. Pharmacol. pmid:26984820
Schulte K et al. Cannabinoid CB1 receptor activation, pharmacological blockade, or genetic ablation affects the function of the muscarinic auto- and heteroreceptor. 2012 Naunyn Schmiedebergs Arch. Pharmacol. pmid:22215206
Ameri A and Simmet T Effects of 2-arachidonylglycerol, an endogenous cannabinoid, on neuronal activity in rat hippocampal slices. 2000 Naunyn Schmiedebergs Arch. Pharmacol. pmid:10731038
Ilayan E et al. Do cannabinoids exhibit a tyramine-like effect? 2013 Naunyn Schmiedebergs Arch. Pharmacol. pmid:23900610
Jergas B et al. O-2050 facilitates noradrenaline release and increases the CB1 receptor inverse agonistic effect of rimonabant in the guinea pig hippocampus. 2014 Naunyn Schmiedebergs Arch. Pharmacol. pmid:24853577
Hohmann AG et al. An endocannabinoid mechanism for stress-induced analgesia. 2005 Nature pmid:15973410
Di Marzo V et al. Trick or treat from food endocannabinoids? 1998 Nature pmid:9872309
Panikashvili D et al. An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. 2001 Nature pmid:11586361
Di Marzo V et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. 2001 Nature pmid:11298451
Wilson RI and Nicoll RA Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. 2001 Nature pmid:11279497
Stella N et al. A second endogenous cannabinoid that modulates long-term potentiation. 1997 Nature pmid:9285589
Kim J and Alger BE Inhibition of cyclooxygenase-2 potentiates retrograde endocannabinoid effects in hippocampus. 2004 Nat. Neurosci. pmid:15184902
Giuffrida A et al. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. 1999 Nat. Neurosci. pmid:10204543