2-arachidonoylglycerol

2-arachidonoylglycerol is a lipid of Glycerolipids (GL) class. 2-arachidonoylglycerol is associated with abnormalities such as Atherosclerosis, Heart Diseases, Inflammatory disorder, Colitis and Peripheral Neuropathy. The involved functions are known as Immunoreactivity, inhibitors, Stimulus, Esthesia and Signal Transduction. 2-arachidonoylglycerol often locates in Back, Presynaptic Terminals, Brain region, Blood and Body tissue. The associated genes with 2-arachidonoylglycerol are ADRBK1 gene, Homologous Gene, MGLL gene, PLA2G4A gene and peptide V. The related lipids are oleoylethanolamide, Lipopolysaccharides, Promega, stearic acid and 1-stearoyl-2-arachidonoylglycerol. The related experimental models are Knock-out.

Cross Reference

Introduction

To understand associated biological information of 2-arachidonoylglycerol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2-arachidonoylglycerol?

2-arachidonoylglycerol is suspected in Atherosclerosis, Heart Diseases, Sweet's Syndrome, Colitis, Dehydration, Diabetes and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2-arachidonoylglycerol

MeSH term MeSH ID Detail
Stomach Ulcer D013276 75 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Pain D010146 64 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Body Weight D001835 333 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Hypotension D007022 41 associated lipids
Per page 10 20 50 100 | Total 51

PubChem Associated disorders and diseases

What pathways are associated with 2-arachidonoylglycerol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2-arachidonoylglycerol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2-arachidonoylglycerol?

Knock-out

Knock-out are used in the study 'Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice.' (Walentiny DM et al., 2015), Knock-out are used in the study 'Biochemical and pharmacological characterization of human α/β-hydrolase domain containing 6 (ABHD6) and 12 (ABHD12).' (Navia-Paldanius D et al., 2012) and Knock-out are used in the study 'Metabolic Interplay between Astrocytes and Neurons Regulates Endocannabinoid Action.' (Viader A et al., 2015).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 2-arachidonoylglycerol

Download all related citations
Per page 10 20 50 100 | Total 1060
Authors Title Published Journal PubMed Link
Siegmund SV et al. Cyclooxygenase-2 contributes to the selective induction of cell death by the endocannabinoid 2-arachidonoyl glycerol in hepatic stellate cells. 2016 Biochem. Biophys. Res. Commun. pmid:26801558
Spivak CE et al. Blockade of β-cell K(ATP) channels by the endocannabinoid, 2-arachidonoylglycerol. 2012 Biochem. Biophys. Res. Commun. pmid:22609205
Sugiura T et al. Generation of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, in picrotoxinin-administered rat brain. 2000 Biochem. Biophys. Res. Commun. pmid:10814517
Bisogno T et al. Brain regional distribution of endocannabinoids: implications for their biosynthesis and biological function. 1999 Biochem. Biophys. Res. Commun. pmid:10079192
Siegmund SV et al. Fatty acid amide hydrolase but not monoacyl glycerol lipase controls cell death induced by the endocannabinoid 2-arachidonoyl glycerol in hepatic cell populations. 2013 Biochem. Biophys. Res. Commun. pmid:23806692
Kozono S et al. Involvement of the endocannabinoid system in periodontal healing. 2010 Biochem. Biophys. Res. Commun. pmid:20233580
Sugiura T et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. 1995 Biochem. Biophys. Res. Commun. pmid:7575630
Chen J et al. Finding of endocannabinoids in human eye tissues: implications for glaucoma. 2005 Biochem. Biophys. Res. Commun. pmid:15823551
Maccarrone M et al. Anandamide and 2-arachidonoylglycerol inhibit fatty acid amide hydrolase by activating the lipoxygenase pathway of the arachidonate cascade. 2000 Biochem. Biophys. Res. Commun. pmid:11095952
Di Marzo V et al. Potential biosynthetic connections between the two cannabimimetic eicosanoids, anandamide and 2-arachidonoyl-glycerol, in mouse neuroblastoma cells. 1996 Biochem. Biophys. Res. Commun. pmid:8858137
Nithipatikom K et al. A new class of inhibitors of 2-arachidonoylglycerol hydrolysis and invasion of prostate cancer cells. 2005 Biochem. Biophys. Res. Commun. pmid:15919052
Sugiura T et al. Inhibition by 2-arachidonoylglycerol, a novel type of possible neuromodulator, of the depolarization-induced increase in intracellular free calcium in neuroblastoma x glioma hybrid NG108-15 cells. 1997 Biochem. Biophys. Res. Commun. pmid:9144424
Sugiura T et al. Detection of an endogenous cannabimimetic molecule, 2-arachidonoylglycerol, and cannabinoid CB1 receptor mRNA in human vascular cells: is 2-arachidonoylglycerol a possible vasomodulator? 1998 Biochem. Biophys. Res. Commun. pmid:9501013
González S et al. Sex steroid influence on cannabinoid CB(1) receptor mRNA and endocannabinoid levels in the anterior pituitary gland. 2000 Biochem. Biophys. Res. Commun. pmid:10733937
Gokoh M et al. 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces rapid actin polymerization in HL-60 cells differentiated into macrophage-like cells. 2005 Biochem. J. pmid:15456404
Bisogno T et al. Biosynthesis, release and degradation of the novel endogenous cannabimimetic metabolite 2-arachidonoylglycerol in mouse neuroblastoma cells. 1997 Biochem. J. pmid:9065792
Di Marzo V et al. Palmitoylethanolamide inhibits the expression of fatty acid amide hydrolase and enhances the anti-proliferative effect of anandamide in human breast cancer cells. 2001 Biochem. J. pmid:11485574
Di Marzo V et al. The novel endogenous cannabinoid 2-arachidonoylglycerol is inactivated by neuronal- and basophil-like cells: connections with anandamide. 1998 Biochem. J. pmid:9512456
Fowler CJ et al. Fatty acid amide hydrolase: biochemistry, pharmacology, and therapeutic possibilities for an enzyme hydrolyzing anandamide, 2-arachidonoylglycerol, palmitoylethanolamide, and oleamide. 2001 Biochem. Pharmacol. pmid:11585048
Rockwell CE et al. A COX-2 metabolite of the endogenous cannabinoid, 2-arachidonyl glycerol, mediates suppression of IL-2 secretion in activated Jurkat T cells. 2008 Biochem. Pharmacol. pmid:18571623