2-arachidonoylglycerol

2-arachidonoylglycerol is a lipid of Glycerolipids (GL) class. 2-arachidonoylglycerol is associated with abnormalities such as Atherosclerosis, Heart Diseases, Inflammatory disorder, Colitis and Peripheral Neuropathy. The involved functions are known as Immunoreactivity, inhibitors, Stimulus, Esthesia and Signal Transduction. 2-arachidonoylglycerol often locates in Back, Presynaptic Terminals, Brain region, Blood and Body tissue. The associated genes with 2-arachidonoylglycerol are ADRBK1 gene, Homologous Gene, MGLL gene, PLA2G4A gene and peptide V. The related lipids are oleoylethanolamide, Lipopolysaccharides, Promega, stearic acid and 1-stearoyl-2-arachidonoylglycerol. The related experimental models are Knock-out.

Cross Reference

Introduction

To understand associated biological information of 2-arachidonoylglycerol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2-arachidonoylglycerol?

2-arachidonoylglycerol is suspected in Atherosclerosis, Heart Diseases, Sweet's Syndrome, Colitis, Dehydration, Diabetes and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2-arachidonoylglycerol

MeSH term MeSH ID Detail
Stomach Ulcer D013276 75 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Pain D010146 64 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Body Weight D001835 333 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Hypotension D007022 41 associated lipids
Per page 10 20 50 100 | Total 51

PubChem Associated disorders and diseases

What pathways are associated with 2-arachidonoylglycerol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2-arachidonoylglycerol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2-arachidonoylglycerol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2-arachidonoylglycerol?

Knock-out

Knock-out are used in the study 'Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice.' (Walentiny DM et al., 2015), Knock-out are used in the study 'Biochemical and pharmacological characterization of human α/β-hydrolase domain containing 6 (ABHD6) and 12 (ABHD12).' (Navia-Paldanius D et al., 2012) and Knock-out are used in the study 'Metabolic Interplay between Astrocytes and Neurons Regulates Endocannabinoid Action.' (Viader A et al., 2015).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 2-arachidonoylglycerol

Download all related citations
Per page 10 20 50 100 | Total 1060
Authors Title Published Journal PubMed Link
Zou Z et al. Endocannabinoid 2-Arachidonoylglycerol Suppresses LPS-Induced Inhibition of A-Type Potassium Channel Currents in Caudate Nucleus Neurons Through CB1 Receptor. 2016 J. Mol. Neurosci. pmid:27129498
Keyshams N et al. Cannabinoid-glutamate interactions in the regulation of food intake in neonatal layer- type chicks: role of glutamate NMDA and AMPA receptors. 2016 Vet. Res. Commun. pmid:27000110
Feliszek M et al. Lack of hippocampal CB1 receptor desensitization by Δ(9)-tetrahydrocannabinol in aged mice and by low doses of JZL 184. 2016 Naunyn Schmiedebergs Arch. Pharmacol. pmid:26984820
Tung LW et al. Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons. 2016 Nat Commun pmid:27448020
Reddy IA et al. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels. 2016 Transl Psychiatry pmid:27187231
Gray JM et al. Sustained glucocorticoid exposure recruits cortico-limbic CRH signaling to modulate endocannabinoid function. 2016 Psychoneuroendocrinology pmid:26821211
Artegoitia VM et al. Endocannabinoids concentrations in plasma associated with feed efficiency and carcass composition of beef steers. 2016 J. Anim. Sci. pmid:28046144
Martella A et al. Bisphenol A Induces Fatty Liver by an Endocannabinoid-Mediated Positive Feedback Loop. 2016 Endocrinology pmid:27014939
Iannotti FA et al. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders. 2016 Prog. Lipid Res. pmid:26965148
Leishman E et al. Broad impact of deleting endogenous cannabinoid hydrolyzing enzymes and the CB1 cannabinoid receptor on the endogenous cannabinoid-related lipidome in eight regions of the mouse brain. 2016 Pharmacol. Res. pmid:27109320
Di S et al. Acute Stress Suppresses Synaptic Inhibition and Increases Anxiety via Endocannabinoid Release in the Basolateral Amygdala. 2016 J. Neurosci. pmid:27511017
Aaltonen N et al. In Vivo Characterization of the Ultrapotent Monoacylglycerol Lipase Inhibitor {4-[bis-(benzo[d][1,3]dioxol-5-yl)methyl]-piperidin-1-yl}(1H-1,2,4-triazol-1-yl)methanone (JJKK-048). 2016 J. Pharmacol. Exp. Ther. pmid:27451409
Grabner GF et al. Deletion of Monoglyceride Lipase in Astrocytes Attenuates Lipopolysaccharide-induced Neuroinflammation. 2016 J. Biol. Chem. pmid:26565024
Sticht MA et al. Endocannabinoid regulation of nausea is mediated by 2-arachidonoylglycerol (2-AG) in the rat visceral insular cortex. 2016 Neuropharmacology pmid:26541329
McReynolds JR et al. CB1 receptor antagonism blocks stress-potentiated reinstatement of cocaine seeking in rats. 2016 Psychopharmacology (Berl.) pmid:26455361
Wiley JL et al. Just add water: cannabinoid discrimination in a water T-maze with FAAH(-/-) and FAAH(+/+) mice. 2016 Behav Pharmacol pmid:27385208
Liisberg U et al. Intake of a Western diet containing cod instead of pork alters fatty acid composition in tissue phospholipids and attenuates obesity and hepatic lipid accumulation in mice. 2016 J. Nutr. Biochem. pmid:27155918
Midtbø LK et al. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice. 2015 J. Nutr. Biochem. pmid:25776459
Niki M et al. Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice. 2015 J. Physiol. (Lond.) pmid:25728242
Bashashati M et al. Inhibiting endocannabinoid biosynthesis: a novel approach to the treatment of constipation. 2015 Br. J. Pharmacol. pmid:25684407
Schaich CL et al. Alterations in the Medullary Endocannabinoid System Contribute to Age-related Impairment of Baroreflex Sensitivity. 2015 J. Cardiovasc. Pharmacol. pmid:25636077
Belluomo I et al. Opposite control of frontocortical 2-arachidonoylglycerol turnover rate by cannabinoid type-1 receptors located on glutamatergic neurons and on astrocytes. 2015 J. Neurochem. pmid:25626460
Brosnihan KB et al. Local uterine Ang-(1-7) infusion augments the expression of cannabinoid receptors and differentially alters endocannabinoid metabolizing enzymes in the decidualized uterus of pseudopregnant rats. 2015 Reprod. Biol. Endocrinol. pmid:25596750
Lecru L et al. Cannabinoid receptor 1 is a major mediator of renal fibrosis. 2015 Kidney Int. pmid:25760323
Mann A et al. Palmitoyl Serine: An Endogenous Neuroprotective Endocannabinoid-Like Entity After Traumatic Brain Injury. 2015 J Neuroimmune Pharmacol pmid:25721934
Marcaggi P Cerebellar endocannabinoids: retrograde signaling from purkinje cells. 2015 Cerebellum pmid:25520276
Szekeres M et al. Endocannabinoid-mediated modulation of Gq/11 protein-coupled receptor signaling-induced vasoconstriction and hypertension. 2015 Mol. Cell. Endocrinol. pmid:25595485
Li B et al. Endogenous 2-Arachidonoylglycerol Alleviates Cyclooxygenases-2 Elevation-Mediated Neuronal Injury From SO2 Inhalation via PPARγ Pathway. 2015 Toxicol. Sci. pmid:26209559
Ivanov I et al. A simple method for simultaneous determination of N-arachidonoylethanolamine, N-oleoylethanolamine, N-palmitoylethanolamine and 2-arachidonoylglycerol in human cells. 2015 Anal Bioanal Chem pmid:25519724
Walentiny DM et al. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice. 2015 Neuropharmacology pmid:25698527
Monteleone AM et al. Deranged endocannabinoid responses to hedonic eating in underweight and recently weight-restored patients with anorexia nervosa. 2015 Am. J. Clin. Nutr. pmid:25646322
Gaskari SA et al. Blunted cardiac response to hemorrhage in cirrhotic rats is mediated by local macrophage-released endocannabinoids. 2015 J. Hepatol. pmid:25640062
Scotchie JG et al. Endocannabinoid regulation in human endometrium across the menstrual cycle. 2015 Reprod Sci pmid:24819878
Pasquarelli N et al. Comparative biochemical characterization of the monoacylglycerol lipase inhibitor KML29 in brain, spinal cord, liver, spleen, fat and muscle tissue. 2015 Neuropharmacology pmid:25497453
Pisanti S et al. Anandamide drives cell cycle progression through CB1 receptors in a rat model of synchronized liver regeneration. 2015 J. Cell. Physiol. pmid:25684344
Aliczki M et al. Involvement of 2-arachidonoylglycerol signaling in social challenge responding of male CD1 mice. 2015 Psychopharmacology (Berl.) pmid:25547462
Urquhart P et al. Endocannabinoids and their oxygenation by cyclo-oxygenases, lipoxygenases and other oxygenases. 2015 Biochim. Biophys. Acta pmid:25543004
Ford GK et al. Involvement of the endocannabinoid system in attentional modulation of nociceptive behaviour in rats. 2015 Eur J Pain pmid:25504741
Sticht MA et al. Intra-visceral insular cortex 2-arachidonoylglycerol, but not N-arachidonoylethanolamide, suppresses acute nausea-induced conditioned gaping in rats. 2015 Neuroscience pmid:25499318
Orellana-Serradell O et al. Proapoptotic effect of endocannabinoids in prostate cancer cells. 2015 Oncol. Rep. pmid:25606819
Wollank Y et al. Inhibition of FAAH confers increased stem cell migration via PPARα. 2015 J. Lipid Res. pmid:26263913
Zheng G et al. Chronic stress and peripheral pain: Evidence for distinct, region-specific changes in visceral and somatosensory pain regulatory pathways. 2015 Exp. Neurol. pmid:26408049
Szafran B et al. Lipopolysaccharide suppresses carboxylesterase 2g activity and 2-arachidonoylglycerol hydrolysis: A possible mechanism to regulate inflammation. 2015 Prostaglandins Other Lipid Mediat. pmid:26403860
Mitchener MM et al. Competition and allostery govern substrate selectivity of cyclooxygenase-2. 2015 Proc. Natl. Acad. Sci. U.S.A. pmid:26392530
Wang H et al. Cocaine-Induced Endocannabinoid Mobilization in the Ventral Tegmental Area. 2015 Cell Rep pmid:26365195
Ho WS et al. Role of endothelial TRPV4 channels in vascular actions of the endocannabinoid, 2-arachidonoylglycerol. 2015 Br. J. Pharmacol. pmid:26294342
DiPatrizio NV et al. Fasting stimulates 2-AG biosynthesis in the small intestine: role of cholinergic pathways. 2015 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:26290104
Mounsey RB et al. Increasing levels of the endocannabinoid 2-AG is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. 2015 Exp. Neurol. pmid:26244281
Guggenhuber S et al. Impaired 2-AG Signaling in Hippocampal Glutamatergic Neurons: Aggravation of Anxiety-Like Behavior and Unaltered Seizure Susceptibility. 2015 Int. J. Neuropsychopharmacol. pmid:26232789
Imperatore R et al. Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB₁R signaling and anxiety-like behavior. 2015 J. Neurochem. pmid:26223500