alpha-linolenic acid

Alpha-linolenic acid is a lipid of Fatty Acyls (FA) class. Alpha-linolenic acid is associated with abnormalities such as Coronary heart disease, abnormal fragmented structure, Arterial thrombosis and Subarachnoid Hemorrhage. The involved functions are known as Anabolism, Signal, Transcription, Genetic, Saturated and Regulation. Alpha-linolenic acid often locates in Blood, Body tissue, Plasma membrane, Hepatic and peroxisome. The associated genes with alpha-linolenic acid are FATE1 gene, volicitin, CYP2U1 gene, CYP1A2 gene and CYP2J2 gene. The related lipids are Fatty Acids, Dietary Fatty Acid, stearidonic acid and Fatty Acids, Nonesterified.

Cross Reference

Introduction

To understand associated biological information of alpha-linolenic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with alpha-linolenic acid?

alpha-linolenic acid is suspected in Coronary heart disease, Arterial thrombosis, Subarachnoid Hemorrhage and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with alpha-linolenic acid

MeSH term MeSH ID Detail
Night Blindness D009755 1 associated lipids
Stomatitis, Aphthous D013281 1 associated lipids
Conjunctivitis, Allergic D003233 1 associated lipids
Aging, Premature D019588 1 associated lipids
Hearing Loss, High-Frequency D006316 1 associated lipids
Otorhinolaryngologic Neoplasms D010039 2 associated lipids
Spinal Cord Ischemia D020760 2 associated lipids
Torsades de Pointes D016171 2 associated lipids
Sebaceous Gland Neoplasms D012626 2 associated lipids
Mental Fatigue D005222 3 associated lipids
Carcinogenesis D063646 3 associated lipids
Depression, Postpartum D019052 3 associated lipids
Dyskinesias D020820 3 associated lipids
Insect Bites and Stings D007299 4 associated lipids
Endomyocardial Fibrosis D004719 4 associated lipids
Amyloidosis D000686 4 associated lipids
Retinitis Pigmentosa D012174 6 associated lipids
Exocrine Pancreatic Insufficiency D010188 6 associated lipids
Pancytopenia D010198 6 associated lipids
Urinary Bladder Neoplasms D001749 7 associated lipids
Irritable Bowel Syndrome D043183 8 associated lipids
Community-Acquired Infections D017714 8 associated lipids
Paraplegia D010264 8 associated lipids
Hyperlipidemia, Familial Combined D006950 9 associated lipids
Tachycardia, Ventricular D017180 9 associated lipids
Retinal Degeneration D012162 9 associated lipids
Vitamin B 6 Deficiency D026681 10 associated lipids
Colorectal Neoplasms D015179 10 associated lipids
Long QT Syndrome D008133 10 associated lipids
Overweight D050177 11 associated lipids
Aortic Diseases D001018 11 associated lipids
Learning Disorders D007859 11 associated lipids
Cat Diseases D002371 12 associated lipids
Retinoblastoma D012175 12 associated lipids
Death, Sudden, Cardiac D016757 12 associated lipids
Deficiency Diseases D003677 12 associated lipids
Neoplasms D009369 13 associated lipids
Atrial Fibrillation D001281 16 associated lipids
Adenomatous Polyposis Coli D011125 16 associated lipids
Ventricular Fibrillation D014693 16 associated lipids
Bronchial Spasm D001986 18 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Carcinoma, Ductal, Breast D018270 19 associated lipids
Pregnancy Complications D011248 19 associated lipids
Prostatic Hyperplasia D011470 20 associated lipids
Diabetic Angiopathies D003925 20 associated lipids
Tuberculosis D014376 20 associated lipids
Myocardial Infarction D009203 21 associated lipids
Malaria, Falciparum D016778 22 associated lipids
Hypersensitivity D006967 22 associated lipids
Per page 10 20 50 100 | Total 104

PubChem Associated disorders and diseases

What pathways are associated with alpha-linolenic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with alpha-linolenic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with alpha-linolenic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with alpha-linolenic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with alpha-linolenic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with alpha-linolenic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with alpha-linolenic acid

Download all related citations
Per page 10 20 50 100 | Total 2471
Authors Title Published Journal PubMed Link
Jiang MH et al. Comparative GC/MS analysis of essential oils extracted by 3 methods from the bud of Citrus aurantium L. var. amara Engl. 2011 Nov-Dec J. Food Sci. pmid:22416680
Dhobale MV et al. Reduced levels of placental long chain polyunsaturated fatty acids in preterm deliveries. 2011 Sep-Oct Prostaglandins Leukot. Essent. Fatty Acids pmid:21816593
Azrad M et al. Prostatic alpha-linolenic acid (ALA) is positively associated with aggressive prostate cancer: a relationship which may depend on genetic variation in ALA metabolism. 2012 PLoS ONE pmid:23285256
Wang X et al. Transcriptome analysis of Sacha Inchi (Plukenetia volubilis L.) seeds at two developmental stages. 2012 BMC Genomics pmid:23256450
Pany S et al. PKC activation by resveratrol derivatives with unsaturated aliphatic chain. 2012 PLoS ONE pmid:23285216
Botsoglou E et al. Effect of supplementation of the laying hen diet with olive leaves (Olea europea L.) on lipid oxidation and fatty acid profile of α-linolenic acid enriched eggs during storage. 2012 Br. Poult. Sci. pmid:23130586
Zhao T et al. Impact of roasting on the chemical composition and oxidative stability of perilla oil. 2012 J. Food Sci. pmid:23140339
Wang Z et al. De novo characterization of the banana root transcriptome and analysis of gene expression under Fusarium oxysporum f. sp. Cubense tropical race 4 infection. 2012 BMC Genomics pmid:23170772
Astiz M et al. Exogenous arachidonate restores the dimethoate-induced inhibition of steroidogenesis in rat interstitial cells. 2012 Lipids pmid:22476691
Macášek J et al. Plasma fatty acid composition in patients with pancreatic cancer: correlations to clinical parameters. 2012 Nutr Cancer pmid:23061902
Vanden Heuvel JP et al. Mechanistic examination of walnuts in prevention of breast cancer. 2012 Nutr Cancer pmid:23061909
Vedtofte MS et al. The role of essential fatty acids in the control of coronary heart disease. 2012 Curr Opin Clin Nutr Metab Care pmid:23037902
Kim DH et al. Gamma linolenic acid exerts anti-inflammatory and anti-fibrotic effects in diabetic nephropathy. 2012 Yonsei Med. J. pmid:23074118
Pan A et al. α-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis. 2012 Am. J. Clin. Nutr. pmid:23076616
Barrett E et al. Bifidobacterium breve with α-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome. 2012 PLoS ONE pmid:23185248
Fang XL et al. Roles of α-linolenic acid on IGF-I secretion and GH/IGF system gene expression in porcine primary hepatocytes. 2012 Mol. Biol. Rep. pmid:23053988
Hennessy AA et al. The production of conjugated α-linolenic, γ-linolenic and stearidonic acids by strains of bifidobacteria and propionibacteria. 2012 Lipids pmid:22160449
Järvinen R et al. Associations of dietary polyunsaturated fatty acids with bone mineral density in elderly women. 2012 Eur J Clin Nutr pmid:22113249
Nandi S et al. Effect of prostaglandin producing modulators on in vitro growth of buffalo uterine epithelial cells. 2012 Theriogenology pmid:22115808
Gutla PV et al. Modulation of plant TPC channels by polyunsaturated fatty acids. 2012 J. Exp. Bot. pmid:23105130
Jernerén F et al. Linolenate 9R-dioxygenase and allene oxide synthase activities of Lasiodiplodia theobromae. 2012 Lipids pmid:22048860
Msika O et al. NGF blocks polyunsaturated fatty acids biosynthesis in n-3 fatty acid-supplemented PC12 cells. 2012 Biochim. Biophys. Acta pmid:22564256
Beck JJ et al. Generation of the volatile spiroketals conophthorin and chalcogran by fungal spores on polyunsaturated fatty acids common to almonds and pistachios. 2012 J. Agric. Food Chem. pmid:23153034
Sauerwald UC et al. Effect of different levels of docosahexaenoic acid supply on fatty acid status and linoleic and α-linolenic acid conversion in preterm infants. 2012 J. Pediatr. Gastroenterol. Nutr. pmid:22008957
Han SN et al. Novel soybean oils differing in fatty acid composition alter immune functions of moderately hypercholesterolemic older adults. 2012 J. Nutr. pmid:23096013
Shinohara N et al. Jacaric acid, a linolenic acid isomer with a conjugated triene system, has a strong antitumor effect in vitro and in vivo. 2012 Biochim. Biophys. Acta pmid:22521763
Valentine CJ Maternal dietary DHA supplementation to improve inflammatory outcomes in the preterm infant. 2012 Adv Nutr pmid:22585914
González-Mañán D et al. Bioconversion of α-linolenic acid to n-3 LCPUFA and expression of PPAR-alpha, acyl Coenzyme A oxidase 1 and carnitine acyl transferase I are incremented after feeding rats with α-linolenic acid-rich oils. 2012 Food Funct pmid:22588205
Vecchio AJ et al. Investigating substrate promiscuity in cyclooxygenase-2: the role of Arg-120 and residues lining the hydrophobic groove. 2012 J. Biol. Chem. pmid:22637474
Jiang M et al. [Protective effect of ALA on high glucose induced cellular injury of LLC-PK1 cell]. 2012 Wei Sheng Yan Jiu pmid:22611923
Ngaki MN et al. Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis. 2012 Nature pmid:22622584
Yang Q et al. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. 2012 Theor. Appl. Genet. pmid:22534790
von Berlepsch S et al. The acyl-acyl carrier protein synthetase from Synechocystis sp. PCC 6803 mediates fatty acid import. 2012 Plant Physiol. pmid:22535424
Tyagi A et al. Attenuation of colonic inflammation by partial replacement of dietary linoleic acid with α-linolenic acid in a rat model of inflammatory bowel disease. 2012 Br. J. Nutr. pmid:22243775
Thomas T et al. The effect of a 1-year multiple micronutrient or n-3 fatty acid fortified food intervention on morbidity in Indian school children. 2012 Eur J Clin Nutr pmid:22009072
Alessandri JM et al. Influence of gender on DHA synthesis: the response of rat liver to low dietary α-linolenic acid evidences higher ω3 ∆4-desaturation index in females. 2012 Eur J Nutr pmid:21647669
Raatz SK et al. Total dietary fat and fatty acid content modifies plasma phospholipid fatty acids, desaturase activity indices, and urinary prostaglandin E in women. 2012 Nutr Res pmid:22260857
Demchenko K et al. Analysis of the subcellular localisation of lipoxygenase in legume and actinorhizal nodules. 2012 Plant Biol (Stuttg) pmid:21973171
Jackson MD et al. Associations of whole-blood fatty acids and dietary intakes with prostate cancer in Jamaica. 2012 Cancer Causes Control pmid:21984307
Zhang J et al. Alpha-linolenic acid increases cholesterol efflux in macrophage-derived foam cells by decreasing stearoyl CoA desaturase 1 expression: evidence for a farnesoid-X-receptor mechanism of action. 2012 J. Nutr. Biochem. pmid:21658928
He ML et al. Feeding flaxseed in grass hay and barley silage diets to beef cows increases alpha-linolenic acid and its biohydrogenation intermediates in subcutaneous fat. 2012 J. Anim. Sci. pmid:22274861
Poudyal H et al. Lipid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats. 2012 J. Nutr. Biochem. pmid:21429727
Nieman DC et al. Chia seed supplementation and disease risk factors in overweight women: a metabolomics investigation. 2012 J Altern Complement Med pmid:22830971
Regensburger J et al. Fatty acids and vitamins generate singlet oxygen under UVB irradiation. 2012 Exp. Dermatol. pmid:22229443
Padilla MN et al. Molecular cloning, functional characterization and transcriptional regulation of a 9-lipoxygenase gene from olive. 2012 Phytochemistry pmid:22169502
Levitan EB et al. α-Linolenic acid, linoleic acid and heart failure in women. 2012 Br. J. Nutr. pmid:22172525
Wilk JB et al. Plasma and dietary omega-3 fatty acids, fish intake, and heart failure risk in the Physicians' Health Study. 2012 Am. J. Clin. Nutr. pmid:22952185
Moallem U et al. Transfer rate of α-linolenic acid from abomasally infused flaxseed oil into milk fat and the effects on milk fatty acid composition in dairy cows. 2012 J. Dairy Sci. pmid:22916932
Yang G et al. Duodenal infusion of α-linolenic acid affects fatty acid metabolism in the mammary gland of lactating dairy cows. 2012 J. Dairy Sci. pmid:22921622
Umesha SS and Naidu KA Vegetable oil blends with α-linolenic acid rich Garden cress oil modulate lipid metabolism in experimental rats. 2012 Food Chem pmid:22980881
Janssen S et al. Sensing of fatty acids for octanoylation of ghrelin involves a gustatory G-protein. 2012 PLoS ONE pmid:22768248
Gupta R and Prabhune AA Structural determination and chemical esterification of the sophorolipids produced by Candida bombicola grown on glucose and α-linolenic acid. 2012 Biotechnol. Lett. pmid:22167634
Poudel-Tandukar K et al. Relationship of serum fatty acid composition and desaturase activity to C-reactive protein in Japanese men and women. 2012 Atherosclerosis pmid:22153152
Zheng MM et al. Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters. 2012 Bioresour. Technol. pmid:22209442
Ogawa N et al. Intestinal fatty acid infusion modulates food preference as well as calorie intake via the vagal nerve and midbrain-hypothalamic neural pathways in rats. 2012 Metab. Clin. Exp. pmid:22445513
Shen J et al. Effect of essential fatty acids on glucose-induced cytotoxicity to retinal vascular endothelial cells. 2012 Lipids Health Dis pmid:22781401
Chiu CC et al. Associations between n-3 PUFA concentrations and cognitive function after recovery from late-life depression. 2012 Am. J. Clin. Nutr. pmid:22218153
Lemaitre RN et al. Circulating and dietary α-linolenic acid and incidence of congestive heart failure in older adults: the Cardiovascular Health Study. 2012 Am. J. Clin. Nutr. pmid:22743310
Zhang L et al. Quantitative genomics of 30 complex phenotypes in Wagyu x Angus F₁ progeny. 2012 Int. J. Biol. Sci. pmid:22745575
Fink BD et al. Endothelial cell and platelet bioenergetics: effect of glucose and nutrient composition. 2012 PLoS ONE pmid:22745753
Egert S et al. Margarines fortified with α-linolenic acid, eicosapentaenoic acid, or docosahexaenoic acid alter the fatty acid composition of erythrocytes but do not affect the antioxidant status of healthy adults. 2012 J. Nutr. pmid:22810989
Couëdelo L et al. The fraction of α-linolenic acid present in the sn-2 position of structured triacylglycerols decreases in lymph chylomicrons and plasma triacylglycerols during the course of lipid absorption in rats. 2012 J. Nutr. pmid:22131546
Moallem U and Zachut M Short communication: the effects of supplementation of various n-3 fatty acids to late-pregnant dairy cows on plasma fatty acid composition of the newborn calves. 2012 J. Dairy Sci. pmid:22720961
Nwaru BI et al. Maternal intake of fatty acids during pregnancy and allergies in the offspring. 2012 Br. J. Nutr. pmid:22067943
Garneau V et al. Omega-3 fatty acids status in human subjects estimated using a food frequency questionnaire and plasma phospholipids levels. 2012 Nutr J pmid:22775977
Pal M and Ghosh M Studies on comparative efficacy of α-linolenic acid and α-eleostearic acid on prevention of organic mercury-induced oxidative stress in kidney and liver of rat. 2012 Food Chem. Toxicol. pmid:22269903
Pham AT et al. Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. 2012 Theor. Appl. Genet. pmid:22476873
Rosa DD et al. Fish oil improves the lipid profile and reduces inflammatory cytokines in Wistar rats with precancerous colon lesions. 2012 Nutr Cancer pmid:22483364
Karppi J et al. Serum β-carotene in relation to risk of prostate cancer: the Kuopio Ischaemic Heart Disease Risk Factor study. 2012 Nutr Cancer pmid:22420939
Zhang G et al. Erythrocyte n-3 fatty acids and metabolic syndrome in middle-aged and older Chinese. 2012 J. Clin. Endocrinol. Metab. pmid:22456621
Kowalska A et al. Impact of diets with different proportions of linseed and sunflower oils on the growth, liver histology, immunological and chemical blood parameters, and proximate composition of pikeperch Sander lucioperca (L.). 2012 Fish Physiol. Biochem. pmid:21656178
Arsenault D et al. Chronic dietary intake of α-linolenic acid does not replicate the effects of DHA on passive properties of entorhinal cortex neurons. 2012 Br. J. Nutr. pmid:21851757
Ling PR et al. Purified fish oil eliminating linoleic and alpha linolenic acid meets essential fatty acid requirements in rats. 2012 Metab. Clin. Exp. pmid:22512821
Smink W et al. Linoleic and α-linolenic acid as precursor and inhibitor for the synthesis of long-chain polyunsaturated fatty acids in liver and brain of growing pigs. 2012 Animal pmid:22436184
Bocianowski J et al. Determination of fatty acid composition in seed oil of rapeseed (Brassica napus L.) by mutated alleles of the FAD3 desaturase genes. 2012 J. Appl. Genet. pmid:21912934
Baars T et al. Experimental improvement of cow milk fatty acid composition in organic winter diets. 2012 J. Sci. Food Agric. pmid:22173628
Zhang H et al. A mechanism underlying the effects of polyunsaturated fatty acids on breast cancer. 2012 Int. J. Mol. Med. pmid:22692672
Kronberg SL et al. Treatment of flaxseed to reduce biohydrogenation of α-linolenic acid by ruminal microbes in sheep and cattle, and increase n-3 fatty acid concentrations in red meat. 2012 J. Anim. Sci. pmid:22696616
Turchini GM et al. Jumping on the omega-3 bandwagon: distinguishing the role of long-chain and short-chain omega-3 fatty acids. 2012 Crit Rev Food Sci Nutr pmid:22698270
Botsoglou E et al. Lipid and protein oxidation of α-linolenic acid-enriched pork during refrigerated storage as influenced by diet supplementation with olive leaves (Olea europea L.) or α-tocopheryl acetate. 2012 Meat Sci. pmid:22710099
Erdinest N et al. Anti-inflammatory effects of alpha linolenic acid on human corneal epithelial cells. 2012 Invest. Ophthalmol. Vis. Sci. pmid:22669722
Chen CY and Inui A What kind of polyunsaturated fatty acid should we eat to stay healthy? 2012 Nutrition pmid:22658641
de Freitas JM et al. Influence of cellular fatty acid composition on the response of Saccharomyces cerevisiae to hydrostatic pressure stress. 2012 FEMS Yeast Res. pmid:22846157
Gómez-Cortés P et al. Production of isotopically labeled standards from a uniformly labeled precursor for quantitative volatile metabolomic studies. 2012 Anal. Chem. pmid:22662968
Jin F et al. Supplementation of milled chia seeds increases plasma ALA and EPA in postmenopausal women. 2012 Plant Foods Hum Nutr pmid:22538527
Gerber M Omega-3 fatty acids and cancers: a systematic update review of epidemiological studies. 2012 Br. J. Nutr. pmid:22591896
Tu WC et al. An alternative n-3 fatty acid elongation pathway utilising 18:3n-3 in barramundi (Lates calcarifer). 2012 Biochem. Biophys. Res. Commun. pmid:22640739
Vyncke KE et al. Dietary fatty acid intake, its food sources and determinants in European adolescents: the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. 2012 Br. J. Nutr. pmid:22370331
Park HG et al. Production of a conjugated fatty acid by Bifidobacterium breve LMC520 from α-linolenic acid: conjugated linolenic acid (CLnA). 2012 J. Agric. Food Chem. pmid:22372442
Liu HL et al. Identification and evaluation of ω-3 fatty acid desaturase genes for hyperfortifying α-linolenic acid in transgenic rice seed. 2012 J. Exp. Bot. pmid:22378946
Tu WC et al. Barramundi (Lates calcarifer) desaturase with Δ6/Δ8 dual activities. 2012 Biotechnol. Lett. pmid:22391738
Caspar-Bauguil S et al. Anorexia nervosa patients display a deficit in membrane long chain poly-unsaturated fatty acids. 2012 Clin Nutr pmid:22385730
Gorissen L et al. Conjugated linoleic and linolenic acid production kinetics by bifidobacteria differ among strains. 2012 Int. J. Food Microbiol. pmid:22405353
Shinohara N et al. jacaric acid, a linolenic acid isomer with a conjugated triene system, reduces stearoyl-CoA desaturase expression in liver of mice. 2012 J Oleo Sci pmid:22864514
Román Á et al. Contribution of the different omega-3 fatty acid desaturase genes to the cold response in soybean. 2012 J. Exp. Bot. pmid:22865909
Griffin BA Goldilocks and the three bonds: new evidence for the conditional benefits of dietary α-linolenic acid in treating cardiovascular risk in the metabolic syndrome. 2012 Br. J. Nutr. pmid:22894910
Baxheinrich A et al. Effects of a rapeseed oil-enriched hypoenergetic diet with a high content of α-linolenic acid on body weight and cardiovascular risk profile in patients with the metabolic syndrome. 2012 Br. J. Nutr. pmid:22894911
Nam KH and Yoshihara T Interactions among LOX metabolites regulate temperature-mediated flower bud formation in morning glory (Pharbitis nil). 2012 J. Plant Physiol. pmid:22902207
Evans SJ et al. Association of plasma ω-3 and ω-6 lipids with burden of disease measures in bipolar subjects. 2012 J Psychiatr Res pmid:22884424
Pan H et al. Alpha-linolenic acid is a potent neuroprotective agent against soman-induced neuropathology. 2012 Neurotoxicology pmid:22884490