alpha-linolenic acid

Alpha-linolenic acid is a lipid of Fatty Acyls (FA) class. Alpha-linolenic acid is associated with abnormalities such as Coronary heart disease, abnormal fragmented structure, Arterial thrombosis and Subarachnoid Hemorrhage. The involved functions are known as Anabolism, Signal, Transcription, Genetic, Saturated and Regulation. Alpha-linolenic acid often locates in Blood, Body tissue, Plasma membrane, Hepatic and peroxisome. The associated genes with alpha-linolenic acid are FATE1 gene, volicitin, CYP2U1 gene, CYP1A2 gene and CYP2J2 gene. The related lipids are Fatty Acids, Dietary Fatty Acid, stearidonic acid and Fatty Acids, Nonesterified.

Cross Reference

Introduction

To understand associated biological information of alpha-linolenic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with alpha-linolenic acid?

alpha-linolenic acid is suspected in Coronary heart disease, Arterial thrombosis, Subarachnoid Hemorrhage and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with alpha-linolenic acid

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Adenoma D000236 40 associated lipids
Adrenoleukodystrophy D000326 29 associated lipids
Amyloidosis D000686 4 associated lipids
Aortic Diseases D001018 11 associated lipids
Arteriosclerosis D001161 86 associated lipids
Arthritis D001168 41 associated lipids
Atrial Fibrillation D001281 16 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Birth Weight D001724 23 associated lipids
Urinary Bladder Neoplasms D001749 7 associated lipids
Body Weight D001835 333 associated lipids
Breast Neoplasms D001943 24 associated lipids
Bronchial Spasm D001986 18 associated lipids
Cat Diseases D002371 12 associated lipids
Cattle Diseases D002418 24 associated lipids
Brain Ischemia D002545 89 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Conjunctivitis, Allergic D003233 1 associated lipids
Coronary Artery Disease D003324 47 associated lipids
Coronary Disease D003327 70 associated lipids
Cystic Fibrosis D003550 65 associated lipids
Deficiency Diseases D003677 12 associated lipids
Dermatitis D003872 30 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Angiopathies D003925 20 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Edema D004487 152 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Endomyocardial Fibrosis D004719 4 associated lipids
Epilepsy D004827 35 associated lipids
Mental Fatigue D005222 3 associated lipids
Fatty Liver D005234 48 associated lipids
Hearing Loss, High-Frequency D006316 1 associated lipids
Heart Failure D006333 36 associated lipids
Hemolysis D006461 131 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Hyperlipidemias D006949 73 associated lipids
Hyperlipidemia, Familial Combined D006950 9 associated lipids
Hypersensitivity D006967 22 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Hypertension D006973 115 associated lipids
Inflammation D007249 119 associated lipids
Insect Bites and Stings D007299 4 associated lipids
Per page 10 20 50 100 | Total 104

PubChem Associated disorders and diseases

What pathways are associated with alpha-linolenic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with alpha-linolenic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with alpha-linolenic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with alpha-linolenic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with alpha-linolenic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with alpha-linolenic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with alpha-linolenic acid

Download all related citations
Per page 10 20 50 100 | Total 2471
Authors Title Published Journal PubMed Link
Childs CE et al. Increased dietary α-linolenic acid has sex-specific effects upon eicosapentaenoic acid status in humans: re-examination of data from a randomised, placebo-controlled, parallel study. 2014 Nutr J pmid:25496415
Petrogianni M et al. Additional benefit in CVD risk indices derived from the consumption of fortified milk when combined with a lifestyle intervention. 2014 Public Health Nutr pmid:23249766
Ponnampalam EN et al. Health beneficial long chain omega-3 fatty acid levels in Australian lamb managed under extensive finishing systems. 2014 Meat Sci. pmid:23643471
Lagarde M et al. Structure-function relationships of non-cyclic dioxygenase products from polyunsaturated fatty acids: poxytrins as a class of bioactive derivatives. 2014 Biochimie pmid:25223888
De Mel D and Suphioglu C Fishy business: effect of omega-3 fatty acids on zinc transporters and free zinc availability in human neuronal cells. 2014 Nutrients pmid:25195602
Fretts AM et al. Plasma phospholipid and dietary α-linolenic acid, mortality, CHD and stroke: the Cardiovascular Health Study. 2014 Br. J. Nutr. pmid:25159901
Villar-Tajadura MA et al. Production of conjugated linoleic and conjugated α-linolenic acid in a reconstituted skim milk-based medium by bifidobacterial strains isolated from human breast milk. 2014 Biomed Res Int pmid:25110689
Hoogeveen EK et al. Effect of omega-3 fatty acids on kidney function after myocardial infarction: the Alpha Omega Trial. 2014 Clin J Am Soc Nephrol pmid:25104273
Hwang E et al. Coriander leaf extract exerts antioxidant activity and protects against UVB-induced photoaging of skin by regulation of procollagen type I and MMP-1 expression. 2014 J Med Food pmid:25019675
dos Santos AL et al. Dietary fat composition and cardiac events in patients with type 2 diabetes. 2014 Atherosclerosis pmid:25014032
Caligiuri SP et al. The HYPERFlax trial for determining the anti-HYPERtensive effects of dietary flaxseed in newly diagnosed stage 1 hypertensive patients: study protocol for a randomized, double-blinded, controlled clinical trial. 2014 Trials pmid:24938224
Baumgartner J et al. Providing male rats deficient in iron and n-3 fatty acids with iron and alpha-linolenic acid alone affects brain serotonin and cognition differently from combined provision. 2014 Lipids Health Dis pmid:24928171
Rajaram S Health benefits of plant-derived α-linolenic acid. 2014 Am. J. Clin. Nutr. pmid:24898228
Høstmark AT and Haug A The inverse association between relative abundances of oleic acid and arachidonic acid is related to alpha -linolenic acid. 2014 Lipids Health Dis pmid:24885640
He F et al. Perinatal α-linolenic acid availability alters the expression of genes related to memory and to epigenetic machinery, and the Mecp2 DNA methylation in the whole brain of mouse offspring. 2014 Int. J. Dev. Neurosci. pmid:24866706
Howard TD et al. DNA methylation in an enhancer region of the FADS cluster is associated with FADS activity in human liver. 2014 PLoS ONE pmid:24842322
Eisinger K et al. Lipidomic analysis of the liver from high-fat diet induced obese mice identifies changes in multiple lipid classes. 2014 Exp. Mol. Pathol. pmid:24830603
Marklund M et al. A dietary biomarker approach captures compliance and cardiometabolic effects of a healthy Nordic diet in individuals with metabolic syndrome. 2014 J. Nutr. pmid:25080537
Purushothaman D et al. Flaxseed oil supplementation alters the expression of inflammatory-related genes in dogs. 2014 Genet. Mol. Res. pmid:25078588
Hellstrand S et al. Genetic variation in FADS1 has little effect on the association between dietary PUFA intake and cardiovascular disease. 2014 J. Nutr. pmid:25008580
Lane K et al. Bioavailability and potential uses of vegetarian sources of omega-3 fatty acids: a review of the literature. 2014 Crit Rev Food Sci Nutr pmid:24261532
Carbonera F et al. Effect of dietary replacement of sunflower oil with perilla oil on the absolute fatty acid composition in Nile tilapia (GIFT). 2014 Food Chem pmid:24262550
Herchi W et al. Flaxseed hull: Chemical composition and antioxidant activity during development. 2014 J Oleo Sci pmid:24919478
Morris JB et al. Flavonol content, oil%, and fatty acid composition variability in seeds of Teramnus labialis and T. uncinatus accessions with nutraceutical potential. 2014 J Diet Suppl pmid:25054688
Mariutto M et al. Reprogramming of fatty acid and oxylipin synthesis in rhizobacteria-induced systemic resistance in tomato. 2014 Plant Mol. Biol. pmid:24146221
Matravadia S et al. Both linoleic and α-linolenic acid prevent insulin resistance but have divergent impacts on skeletal muscle mitochondrial bioenergetics in obese Zucker rats. 2014 Am. J. Physiol. Endocrinol. Metab. pmid:24844257
Hudson BD et al. The molecular basis of ligand interaction at free fatty acid receptor 4 (FFA4/GPR120). 2014 J. Biol. Chem. pmid:24860101
Gorina SS et al. Detection and molecular cloning of CYP74Q1 gene: identification of Ranunculus acris leaf divinyl ether synthase. 2014 Biochim. Biophys. Acta pmid:24863619
Saliba L et al. Effect of feeding linseed oil in diets differing in forage to concentrate ratio: 1. Production performance and milk fat content of biohydrogenation intermediates of α-linolenic acid. 2014 J. Dairy Res. pmid:24433586
Dai XW et al. Erythrocyte membrane n-3 fatty acid levels and carotid atherosclerosis in Chinese men and women. 2014 Atherosclerosis pmid:24401220
Martínez-Ramírez HR et al. Retention of n-3 polyunsaturated fatty acids in trimmed loin and belly is independent of timing of feeding ground flaxseed to growing-finishing female pigs. 2014 J. Anim. Sci. pmid:24305874
Gong Z et al. G protein-coupled receptor 120 signaling regulates ghrelin secretion in vivo and in vitro. 2014 Am. J. Physiol. Endocrinol. Metab. pmid:24222669
Sánchez-Reyes OB et al. Free fatty acids and protein kinase C activation induce GPR120 (free fatty acid receptor 4) phosphorylation. 2014 Eur. J. Pharmacol. pmid:24239485
Berasategi I et al. Healthy reduced-fat Bologna sausages enriched in ALA and DHA and stabilized with Melissa officinalis extract. 2014 Meat Sci. pmid:24334039
Sengupta A and Ghosh M Effect of sterol esters on lipid composition and antioxidant status of erythrocyte membrane of hypercholesterolemic rats. 2014 J Oleo Sci pmid:24770475
Yuan X et al. Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana. 2014 J. Exp. Bot. pmid:24609499
Berasategi I et al. Reduced-fat bologna sausages with improved lipid fraction. 2014 J. Sci. Food Agric. pmid:24105447
Vedtofte MS et al. Association between the intake of α-linolenic acid and the risk of CHD. 2014 Br. J. Nutr. pmid:24964401
Soto-Cerda BJ et al. Association mapping of seed quality traits using the Canadian flax (Linum usitatissimum L.) core collection. 2014 Theor. Appl. Genet. pmid:24463785
Yavin E et al. Metabolic conversion of intra-amniotically-injected deuterium-labeled essential fatty acids by fetal rats following maternal n-3 fatty acid deficiency. 2014 Biochim. Biophys. Acta pmid:24960100
Wennman A et al. Kinetic investigation of the rate-limiting step of manganese- and iron-lipoxygenases. 2014 Arch. Biochem. Biophys. pmid:24857825
Liang CH et al. Synthesis of doxorubicin α-linolenic acid conjugate and evaluation of its antitumor activity. 2014 Mol. Pharm. pmid:24720787
Yang Q et al. Anti-thrombotic effects of α-linolenic acid isolated from Zanthoxylum bungeanum Maxim seeds. 2014 BMC Complement Altern Med pmid:25252789
Salazar MO et al. A thin-layer chromatography autographic method for the detection of inhibitors of the Salmonella PhoP-PhoQ regulatory system. 2014 Mar-Apr Phytochem Anal pmid:24185747
Machado AM et al. Effects of brown and golden flaxseed on the lipid profile, glycemia, inflammatory biomarkers, blood pressure and body composition in overweight adolescents. 2015 Nutrition pmid:25441591
He J et al. Correlation of polyunsaturated fatty acids with the cold adaptation of Rhodotorula glutinis. 2015 Yeast pmid:26284451
Valenzuela R et al. Modification of Docosahexaenoic Acid Composition of Milk from Nursing Women Who Received Alpha Linolenic Acid from Chia Oil during Gestation and Nursing. 2015 Nutrients pmid:26247968
Mason JK et al. α-linolenic acid and docosahexaenoic acid, alone and combined with trastuzumab, reduce HER2-overexpressing breast cancer cell growth but differentially regulate HER2 signaling pathways. 2015 Lipids Health Dis pmid:26282560
Pan P et al. Black raspberries suppress colonic adenoma development in ApcMin/+ mice: relation to metabolite profiles. 2015 Carcinogenesis pmid:26246425
Cole C et al. Arum Palaestinum with isovanillin, linolenic acid and β-sitosterol inhibits prostate cancer spheroids and reduces the growth rate of prostate tumors in mice. 2015 BMC Complement Altern Med pmid:26243305