alpha-linolenic acid

Alpha-linolenic acid is a lipid of Fatty Acyls (FA) class. Alpha-linolenic acid is associated with abnormalities such as Coronary heart disease, abnormal fragmented structure, Arterial thrombosis and Subarachnoid Hemorrhage. The involved functions are known as Anabolism, Signal, Transcription, Genetic, Saturated and Regulation. Alpha-linolenic acid often locates in Blood, Body tissue, Plasma membrane, Hepatic and peroxisome. The associated genes with alpha-linolenic acid are FATE1 gene, volicitin, CYP2U1 gene, CYP1A2 gene and CYP2J2 gene. The related lipids are Fatty Acids, Dietary Fatty Acid, stearidonic acid and Fatty Acids, Nonesterified.

Cross Reference

Introduction

To understand associated biological information of alpha-linolenic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with alpha-linolenic acid?

alpha-linolenic acid is suspected in Coronary heart disease, Arterial thrombosis, Subarachnoid Hemorrhage and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with alpha-linolenic acid

MeSH term MeSH ID Detail
Carcinogenesis D063646 3 associated lipids
Atherosclerosis D050197 85 associated lipids
Overweight D050177 11 associated lipids
Irritable Bowel Syndrome D043183 8 associated lipids
Vitamin B 6 Deficiency D026681 10 associated lipids
Metabolic Syndrome D024821 44 associated lipids
Dyskinesias D020820 3 associated lipids
Spinal Cord Ischemia D020760 2 associated lipids
Stroke D020521 32 associated lipids
Neurotoxicity Syndromes D020258 34 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Aging, Premature D019588 1 associated lipids
Depression, Postpartum D019052 3 associated lipids
Carcinoma, Ductal, Breast D018270 19 associated lipids
Community-Acquired Infections D017714 8 associated lipids
Tachycardia, Ventricular D017180 9 associated lipids
Malaria, Falciparum D016778 22 associated lipids
Death, Sudden, Cardiac D016757 12 associated lipids
Torsades de Pointes D016171 2 associated lipids
Weight Gain D015430 101 associated lipids
Zellweger Syndrome D015211 39 associated lipids
Colorectal Neoplasms D015179 10 associated lipids
Vitamin E Deficiency D014811 29 associated lipids
Ventricular Fibrillation D014693 16 associated lipids
Tuberculosis D014376 20 associated lipids
Thrombosis D013927 49 associated lipids
Stomatitis, Aphthous D013281 1 associated lipids
Seizures D012640 87 associated lipids
Sebaceous Gland Neoplasms D012626 2 associated lipids
Retinoblastoma D012175 12 associated lipids
Retinitis Pigmentosa D012174 6 associated lipids
Retinal Degeneration D012162 9 associated lipids
Pseudomonas Infections D011552 25 associated lipids
Prostatic Hyperplasia D011470 20 associated lipids
Pregnancy Complications D011248 19 associated lipids
Precancerous Conditions D011230 48 associated lipids
Adenomatous Polyposis Coli D011125 16 associated lipids
Paraplegia D010264 8 associated lipids
Pancytopenia D010198 6 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Exocrine Pancreatic Insufficiency D010188 6 associated lipids
Pain D010146 64 associated lipids
Otorhinolaryngologic Neoplasms D010039 2 associated lipids
Night Blindness D009755 1 associated lipids
Neuroblastoma D009447 66 associated lipids
Neoplasms D009369 13 associated lipids
Myocardial Infarction D009203 21 associated lipids
Metabolism, Inborn Errors D008661 46 associated lipids
Lung Neoplasms D008175 171 associated lipids
Long QT Syndrome D008133 10 associated lipids
Per page 10 20 50 100 | Total 104

PubChem Associated disorders and diseases

What pathways are associated with alpha-linolenic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with alpha-linolenic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with alpha-linolenic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with alpha-linolenic acid?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with alpha-linolenic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with alpha-linolenic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with alpha-linolenic acid

Download all related citations
Per page 10 20 50 100 | Total 2471
Authors Title Published Journal PubMed Link
Lagarde M et al. Structure-function relationships of non-cyclic dioxygenase products from polyunsaturated fatty acids: poxytrins as a class of bioactive derivatives. 2014 Biochimie pmid:25223888
De Mel D and Suphioglu C Fishy business: effect of omega-3 fatty acids on zinc transporters and free zinc availability in human neuronal cells. 2014 Nutrients pmid:25195602
Fretts AM et al. Plasma phospholipid and dietary α-linolenic acid, mortality, CHD and stroke: the Cardiovascular Health Study. 2014 Br. J. Nutr. pmid:25159901
Villar-Tajadura MA et al. Production of conjugated linoleic and conjugated α-linolenic acid in a reconstituted skim milk-based medium by bifidobacterial strains isolated from human breast milk. 2014 Biomed Res Int pmid:25110689
Eisinger K et al. Lipidomic analysis of the liver from high-fat diet induced obese mice identifies changes in multiple lipid classes. 2014 Exp. Mol. Pathol. pmid:24830603
Carbonera F et al. Effect of dietary replacement of sunflower oil with perilla oil on the absolute fatty acid composition in Nile tilapia (GIFT). 2014 Food Chem pmid:24262550
Dai XW et al. Erythrocyte membrane n-3 fatty acid levels and carotid atherosclerosis in Chinese men and women. 2014 Atherosclerosis pmid:24401220
Martínez-Ramírez HR et al. Retention of n-3 polyunsaturated fatty acids in trimmed loin and belly is independent of timing of feeding ground flaxseed to growing-finishing female pigs. 2014 J. Anim. Sci. pmid:24305874
Gong Z et al. G protein-coupled receptor 120 signaling regulates ghrelin secretion in vivo and in vitro. 2014 Am. J. Physiol. Endocrinol. Metab. pmid:24222669
Hanke D et al. A diet high in α-linolenic acid and monounsaturated fatty acids attenuates hepatic steatosis and alters hepatic phospholipid fatty acid profile in diet-induced obese rats. 2013 Nov-Dec Prostaglandins Leukot. Essent. Fatty Acids pmid:24140006
Hutchins AM et al. Daily flaxseed consumption improves glycemic control in obese men and women with pre-diabetes: a randomized study. 2013 Nutr Res pmid:23684438
Simon MC et al. Fatty acids modulate cytokine and chemokine secretion of stimulated human whole blood cultures in diabetes. 2013 Clin. Exp. Immunol. pmid:23600826
Foster M et al. Inflammation markers predict zinc transporter gene expression in women with type 2 diabetes mellitus. 2013 J. Nutr. Biochem. pmid:23643522
Mapiye C et al. Effects of feeding flaxseed or sunflower-seed in high-forage diets on beef production, quality and fatty acid composition. 2013 Meat Sci. pmid:23669875
Monge-Rojas R et al. Changes in dietary intake and food sources of saturated and cis and trans unsaturated fatty acids in Costa Rican adolescents: 1996 versus 2006. 2013 Nutrition pmid:23298971
Molkentin J Applicability of organic milk indicators to the authentication of processed products. 2013 Food Chem pmid:23199986
Emery JA et al. Δ-6 Desaturase substrate competition: dietary linoleic acid (18:2n-6) has only trivial effects on α-linolenic acid (18:3n-3) bioconversion in the teleost rainbow trout. 2013 PLoS ONE pmid:23460861
Stamey Lanier J et al. Mammary uptake of fatty acids supplied by intravenous triacylglycerol infusion to lactating dairy cows. 2013 Lipids pmid:23504269
Saubeau G et al. Differential induction of oxylipin pathway in potato and tobacco cells by bacterial and oomycete elicitors. 2013 Plant Cell Rep. pmid:23479199
Moloney AP et al. Colour of fat, and colour, fatty acid composition and sensory characteristics of muscle from heifers offered alternative forages to grass silage in a finishing ration. 2013 Meat Sci. pmid:23806853
Van Ba H et al. Significant influence of particular unsaturated fatty acids and pH on the volatile compounds in meat-like model systems. 2013 Meat Sci. pmid:23632107
Blanchard H et al. Comparative effects of well-balanced diets enriched in α-linolenic or linoleic acids on LC-PUFA metabolism in rat tissues. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:23579035
Hawkins A et al. Effects of urea formaldehyde condensation polymer treatment of flaxseed on ruminal digestion and lactation in dairy cows. 2013 J. Dairy Sci. pmid:23548281
Botelho PB et al. Effect of Echium oil compared with marine oils on lipid profile and inhibition of hepatic steatosis in LDLr knockout mice. 2013 Lipids Health Dis pmid:23510369
Cedernaes J et al. Adipose tissue stearoyl-CoA desaturase 1 index is increased and linoleic acid is decreased in obesity-prone rats fed a high-fat diet. 2013 Lipids Health Dis pmid:23298201
Kastner DW and Van Wagoner DR Diet and atrial fibrillation: does α-linolenic acid, a plant derived essential fatty acid, have an impact? 2013 J Am Heart Assoc pmid:23525415
Fretts AM et al. Associations of plasma phospholipid and dietary alpha linolenic acid with incident atrial fibrillation in older adults: the Cardiovascular Health Study. 2013 J Am Heart Assoc pmid:23525429
Kälber T et al. Effect of feeding buckwheat and chicory silages on fatty acid profile and cheese-making properties of milk from dairy cows. 2013 J. Dairy Res. pmid:23253429
Monteiro J et al. Oils rich in α-linolenic acid independently protect against characteristics of fatty liver disease in the Δ6-desaturase null mouse. 2013 Can. J. Physiol. Pharmacol. pmid:23746194
Gillingham LG et al. Dietary oils and FADS1-FADS2 genetic variants modulate [13C]α-linolenic acid metabolism and plasma fatty acid composition. 2013 Am. J. Clin. Nutr. pmid:23221573
Liu M et al. Characterization and biological effects of di-hydroxylated compounds deriving from the lipoxygenation of ALA. 2013 J. Lipid Res. pmid:23740966
Kim Y et al. Synergism of α-linolenic acid, conjugated linoleic acid and calcium in decreasing adipocyte and increasing osteoblast cell growth. 2013 Lipids pmid:23757205
Gage SH et al. Functionalization of monodisperse iron oxide NPs and their properties as magnetically recoverable catalysts. 2013 Langmuir pmid:23234434
Lohner S et al. Gender differences in the long-chain polyunsaturated fatty acid status: systematic review of 51 publications. 2013 Ann. Nutr. Metab. pmid:23327902
MacIntosh BA et al. Low-n-6 and low-n-6 plus high-n-3 diets for use in clinical research. 2013 Br. J. Nutr. pmid:23328113
Carey AN et al. The ability of walnut extract and fatty acids to protect against the deleterious effects of oxidative stress and inflammation in hippocampal cells. 2013 Nutr Neurosci pmid:23321679
Arya E et al. Effect of Perilla frutescens fixed oil on experimental esophagitis in albino Wistar rats. 2013 Biomed Res Int pmid:24027769
Carotenuto F et al. A diet supplemented with ALA-rich flaxseed prevents cardiomyocyte apoptosis by regulating caveolin-3 expression. 2013 Cardiovasc. Res. pmid:24042018
Zhang W et al. Alpha-linolenic acid exerts an endothelial protective effect against high glucose injury via PI3K/Akt pathway. 2013 PLoS ONE pmid:23861910
Randall KM et al. Effects of dietary supplementation of coriander oil, in canola oil diets, on the metabolism of [1-(14)C] 18:3n-3 and [1-(14)C] 18:2n-6 in rainbow trout hepatocytes. 2013 Comp. Biochem. Physiol. B, Biochem. Mol. Biol. pmid:23867781
Oliva ME et al. Dietary Salba (Salvia hispanica L) seed rich in α-linolenic acid improves adipose tissue dysfunction and the altered skeletal muscle glucose and lipid metabolism in dyslipidemic insulin-resistant rats. 2013 Prostaglandins Leukot. Essent. Fatty Acids pmid:24120122
Shen JH et al. Effect of α-linolenic acid on streptozotocin-induced diabetic retinopathy indices in vivo. 2013 Arch. Med. Res. pmid:24120388
Végner L et al. Experimental confirmation of new drug-target interactions predicted by Drug Profile Matching. 2013 J. Med. Chem. pmid:24088053
Dai J et al. Effects of polyunsaturated fatty acids on the growth of gastric cancer cells in vitro. 2013 Lipids Health Dis pmid:23663688
Ogata F et al. Study on analysis of waste edible oil with deterioration and removal of acid value, carbonyl value, and free fatty acid by a food additive (calcium silicate). 2013 J Oleo Sci pmid:23391535
Rodriguez-Leyva D et al. Potent antihypertensive action of dietary flaxseed in hypertensive patients. 2013 Hypertension pmid:24126178
Hoffmann I and Oliw EH Discovery of a linoleate 9S-dioxygenase and an allene oxide synthase in a fusion protein of Fusarium oxysporum. 2013 J. Lipid Res. pmid:24082064
Alhazzaa R et al. Bioconversion of α-linolenic acid into n-3 long-chain polyunsaturated fatty acid in hepatocytes and ad hoc cell culture optimisation. 2013 PLoS ONE pmid:24040040
Caligiuri SP et al. Dietary linoleic acid and α-linolenic acid differentially affect renal oxylipins and phospholipid fatty acids in diet-induced obese rats. 2013 J. Nutr. pmid:23902961
Botsoglou E et al. Olive leaves (Olea europea L.) and α-tocopheryl acetate as feed antioxidants for improving the oxidative stability of α-linolenic acid-enriched eggs. 2013 J Anim Physiol Anim Nutr (Berl) pmid:22716021